Suppr超能文献

使用定量构效关系方法对尼帕病毒抑制剂进行计算鉴定

Computational Identification of Inhibitors Using QSAR Approach Against Nipah Virus.

作者信息

Rajput Akanksha, Kumar Archit, Kumar Manoj

机构信息

Virology Discovery Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.

出版信息

Front Pharmacol. 2019 Feb 12;10:71. doi: 10.3389/fphar.2019.00071. eCollection 2019.

Abstract

Nipah virus (NiV) caused several outbreaks in Asian countries including the latest one from Kerala state of India. There is no drug available against NiV till now, despite its urgent requirement. In the current study, we have provided a computational one-stop solution for NiV inhibitors. We have developed the first " web resource, which comprising of a data repository, prediction method, and data visualization module. The database contains of 313 (181 unique) chemicals extracted from research articles and patents, which were tested for different strains of NiV isolated from various outbreaks. Moreover, the quantitative structure-activity relationship (QSAR) based regression predictors were developed using chemicals having half maximal inhibitory concentration (IC). Predictive models were accomplished using support vector machine employing 10-fold cross validation technique. The overall predictor showed the Pearson's correlation coefficient of 0.82 on training/testing dataset. Likewise, it also performed equally well on the independent validation dataset. The robustness of the predictive model was confirmed by applicability domain (William's plot) and scatter plot between actual and predicted efficiencies. Further, the data visualization module from chemical clustering analysis displayed the diversity in the NiV inhibitors. Therefore, this web platform would be of immense help to the researchers working in developing effective inhibitors against NiV. The user-friendly web server is freely available on URL: http://bioinfo.imtech.res.in/manojk/antinipah/.

摘要

尼帕病毒(NiV)在亚洲国家引发了数次疫情,包括印度喀拉拉邦最近的一次疫情。尽管迫切需要,但目前尚无针对尼帕病毒的药物。在当前的研究中,我们为尼帕病毒抑制剂提供了一种计算一站式解决方案。我们开发了首个“网络资源”,它由一个数据存储库、预测方法和数据可视化模块组成。该数据库包含从研究文章和专利中提取的313种(181种独特的)化学物质,这些化学物质针对从不同疫情中分离出的不同尼帕病毒株进行了测试。此外,使用具有半数最大抑制浓度(IC)的化学物质开发了基于定量构效关系(QSAR)的回归预测器。使用支持向量机并采用10折交叉验证技术完成了预测模型。总体预测器在训练/测试数据集上显示出0.82的皮尔逊相关系数。同样,它在独立验证数据集上也表现良好。预测模型的稳健性通过适用域(威廉姆斯图)以及实际效率与预测效率之间的散点图得到了证实。此外,化学聚类分析的数据可视化模块展示了尼帕病毒抑制剂的多样性。因此,这个网络平台将对致力于开发有效抗尼帕病毒抑制剂的研究人员有极大帮助。这个用户友好的网络服务器可通过以下网址免费获取:http://bioinfo.imtech.res.in/manojk/antinipah/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d9/6379726/59ac40a8cd5d/fphar-10-00071-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验