Foulquier Celine, Huang Ching-Ning, Nguyen Ngoc-Phuong-Thao, Thiel Axel, Wilding-Steel Tom, Soula Julie, Yoo Minyeong, Ehrenreich Armin, Meynial-Salles Isabelle, Liebl Wolfgang, Soucaille Philippe
1LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France.
2Chair of Microbiology, Technical University Munchen, Emil-Ramann-Str. 4, 85354 Freising, Germany.
Biotechnol Biofuels. 2019 Feb 14;12:31. doi: 10.1186/s13068-019-1364-4. eCollection 2019.
and are Gram-positive, spore-forming, anaerobic bacterium capable of converting various sugars and polysaccharides into solvents (acetone, butanol, and ethanol). The sequencing of their genomes has prompted new approaches to genetic analysis, functional genomics, and metabolic engineering to develop industrial strains for the production of biofuels and bulk chemicals.
The method used in this paper to knock-out, knock-in, or edit genes in and combines an improved electroporation method with the use of (i) restrictionless Δ (which encodes uracil phosphoribosyl-transferase) strains and (ii) very small suicide vectors containing a markerless deletion/insertion cassette, an antibiotic resistance gene (for the selection of the first crossing-over) and (from ) for subsequent use as a counterselectable marker with the aid of 5-fluorouracil (5-FU) to promote the second crossing-over. This method was successfully used to both delete genes and edit genes in both and . Among the edited genes, a mutation in the gene that abolished solvent formation in was introduced in and shown to produce the same effect.
The method described in this study will be useful for functional genomic studies and for the development of industrial strains for the production of biofuels and bulk chemicals.
[具体细菌名称1]和[具体细菌名称2]是革兰氏阳性、产芽孢的厌氧菌,能够将各种糖类和多糖转化为溶剂(丙酮、丁醇和乙醇)。它们基因组的测序促使了新的遗传分析、功能基因组学和代谢工程方法的出现,以开发用于生产生物燃料和大宗化学品的工业菌株。
本文用于在[具体细菌名称1]和[具体细菌名称2]中敲除、敲入或编辑基因的方法,将一种改进的电穿孔方法与以下两者结合使用:(i)无限制的Δ[具体基因名称](其编码尿嘧啶磷酸核糖转移酶)菌株,以及(ii)非常小的自杀载体,该载体包含一个无标记缺失/插入盒、一个抗生素抗性基因(用于第一次交叉的选择)和来自[具体来源]的[具体基因名称],以便随后借助5-氟尿嘧啶(5-FU)用作反选择标记以促进第二次交叉。该方法成功地用于在[具体细菌名称1]和[具体细菌名称2]中删除基因和编辑基因。在编辑的基因中,在[具体细菌名称1]中引入了一个消除溶剂形成的[具体基因名称]突变,并在[具体细菌名称2]中显示产生相同的效果。
本研究中描述的方法将有助于功能基因组学研究以及用于生产生物燃料和大宗化学品的工业菌株的开发。