Suppr超能文献

结构-活性关系对具有共面氧化还原活性单元的金属有机框架中通过空间的间隔电荷转移的影响。

Influence of structure-activity relationships on through-space intervalence charge transfer in metal-organic frameworks with cofacial redox-active units.

作者信息

Ding Bowen, Hua Carol, Kepert Cameron J, D'Alessandro Deanna M

机构信息

School of Chemistry , The University of Sydney , New South Wales , 2006 Australia . Email:

出版信息

Chem Sci. 2018 Oct 29;10(5):1392-1400. doi: 10.1039/c8sc01128a. eCollection 2019 Feb 7.

Abstract

Understanding charge transfer in redox-active metal-organic frameworks (MOFs) is of fundamental importance given the potential of these materials to be used in myriad applications including porous conductors, electrocatalysts and battery materials, amongst others. An important challenge is quantifying the spectroscopic features of these materials in order to elucidate their charge transfer properties. Herein, two topologically related Zn(ii) and Cd(ii) frameworks, [Zn(DPPTzTz)(SDC)] () and [Cd(DPPTzTz)(SDC)] () (where DPPTzTz = 2,5-bis(4-(4-pyridinyl)phenyl)thiazolo[5,4-]thiazole and SDC = selenophene-2,5-dicarboxylate), incorporating cofacially stacked pairs of redox-active DPPTzTz ligands are presented. The differences in the through-space intervalence charge transfer properties of the mixed-valence forms of the two frameworks generated upon solid state spectroelectrochemical reduction are quantified using Marcus-Hush theory. Further, charge transfer theory is applied to calculate electron mobilities in both extended framework systems. A larger electronic coupling constant, , of 118 cm corresponding to an electron mobility, , of 6.02 × 10 s was observed for the Zn(ii) analogue compared to the Cd(ii) analogue ( = 61.2 cm and = 2.22 × 10 s) and was correlated primarily with the larger cofacial stacking distance and increasingly offset stacking geometry between DPPTzTz ligands in the latter. Establishing structure-activity relationships in electroactive MOFs, in addition to methods for quantifying their charge transfer properties, represents an important advance in fine tuning solid state materials for device applications.

摘要

鉴于氧化还原活性金属有机框架材料(MOFs)在包括多孔导体、电催化剂和电池材料等众多应用中的潜在用途,了解其电荷转移具有至关重要的意义。一个重要的挑战是量化这些材料的光谱特征,以阐明其电荷转移性质。在此,我们展示了两种拓扑相关的锌(II)和镉(II)框架,即[Zn(DPPTzTz)(SDC)]( )和[Cd(DPPTzTz)(SDC)]( )(其中DPPTzTz = 2,5-双(4-(4-吡啶基)苯基)噻唑并[5,4- ]噻唑,SDC = 硒吩-2,5-二羧酸),它们包含共面堆叠的氧化还原活性DPPTzTz配体对。利用Marcus-Hush理论对固态光谱电化学还原产生的两种框架的混合价态形式的空间间隔电荷转移性质的差异进行了量化。此外,应用电荷转移理论计算了两个扩展框架系统中的电子迁移率。与镉(II)类似物( = 61.2 cm和 = 2.22 × 10 s)相比,锌(II)类似物观察到更大的电子耦合常数 为118 cm ,对应电子迁移率 为6.02 × 10 s,这主要与后者中DPPTzTz配体之间更大的共面堆叠距离和逐渐偏移的堆叠几何结构相关。除了量化其电荷转移性质的方法外,建立电活性MOFs中的结构-活性关系代表了在微调用于器件应用的固态材料方面的重要进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/6357700/c5ec8c711377/c8sc01128a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验