Harry S. Truman Memorial Veteans Hospital, Columbia, MO, USA.
Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA.
J Neuroimmune Pharmacol. 2019 Dec;14(4):537-550. doi: 10.1007/s11481-019-09833-6. Epub 2019 Feb 27.
Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.
小胶质细胞是大脑特异性的专业吞噬免疫细胞,在炎症介导的神经退行性变中发挥关键作用,特别是在帕金森病(PD)和阿尔茨海默病中。胶质细胞成熟因子(GMF)是一种在大脑中大量表达的神经炎症蛋白。我们之前已经表明,GMF 在 PD 大脑的黑质(SN)中表达显著上调。然而,其在 PD 进展中的可能作用仍不完全清楚。成簇规律间隔短回文重复序列(CRISPR)-CRISPR 相关(Cas)蛋白 9(CRISPR/Cas9)系统是一种在所需基因座上简单、快速且通常极其有效的基因编辑工具,能够完全敲除或同源定向修复基因。在这项研究中,我们使用 CRISPR/Cas9 技术检查了 GMF 在 BV2 小胶质细胞(以下简称 BV2-G)中的编辑效果对(1-甲基-4-苯基吡啶)MPP 处理后氧化应激和核因子红细胞 2 相关因子 2(NRF2)/血红素加氧酶 1(HO-1)依赖性铁蛋白激活的影响。BV2-G 细胞中 GMF 的敲除显著通过减少 ROS 产生和钙流来减轻氧化应激。此外,GMF 缺乏显著减少了调节 HO-1 和铁蛋白激活、环氧化酶 2(COX2)和一氧化氮合酶 2(NOS2)表达的 NRF2 的核易位。与未处理的细胞相比,缺乏 GMF 可显著改善 CD11b 和 CD68 阳性小胶质细胞。我们的结果还表明,针对 GMF 的药理学和遗传干预可能代表一种有前途的新治疗策略,通过调节小胶质细胞功能来控制帕金森病。GMF 的靶向调节可能通过调节 NRF2-HO1 和铁蛋白表达来介导与 PD 进展相关的小胶质细胞稳态中的蛋白聚集。