Suppr超能文献

使用看似不相关回归分析检测到的结直肠癌和息肉患者的代谢物水平改变及相关性。

Altered metabolite levels and correlations in patients with colorectal cancer and polyps detected using seemingly unrelated regression analysis.

作者信息

Chen Chen, Gowda G A Nagana, Zhu Jiangjiang, Deng Lingli, Gu Haiwei, Chiorean E Gabriela, Zaid Mohammad Abu, Harrison Marietta, Zhang Dabao, Zhang Min, Raftery Daniel

机构信息

Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.

Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.

出版信息

Metabolomics. 2017 Nov;13(11). doi: 10.1007/s11306-017-1265-0. Epub 2017 Sep 15.

Abstract

INTRODUCTION

Metabolomics technologies enable the identification of putative biomarkers for numerous diseases; however, the influence of confounding factors on metabolite levels poses a major challenge in moving forward with such metabolites for pre-clinical or clinical applications.

OBJECTIVES

To address this challenge, we analyzed metabolomics data from a colorectal cancer (CRC) study, and used seemingly unrelated regression (SUR) to account for the effects of confounding factors including gender, BMI, age, alcohol use, and smoking.

METHODS

A SUR model based on 113 serum metabolites quantified using targeted mass spectrometry, identified 20 metabolites that differentiated CRC patients (n = 36), patients with polyp (n = 39), and healthy subjects (n = 83). Models built using different groups of biologically related metabolites achieved improved differentiation and were significant for 26 out of 29 groups. Furthermore, the networks of correlated metabolites constructed for all groups of metabolites using the ParCorA algorithm, before or after application of the SUR model, showed significant alterations for CRC and polyp patients relative to healthy controls.

RESULTS

The results showed that demographic covariates, such as gender, BMI, BMI, and smoking status, exhibit significant confounding effects on metabolite levels, which can be modeled effectively.

CONCLUSION

These results not only provide new insights into addressing the major issue of confounding effects in metabolomics analysis, but also shed light on issues related to establishing reliable biomarkers and the biological connections between them in a complex disease.

摘要

引言

代谢组学技术能够识别多种疾病的潜在生物标志物;然而,混杂因素对代谢物水平的影响给将此类代谢物推进到临床前或临床应用带来了重大挑战。

目的

为应对这一挑战,我们分析了一项结直肠癌(CRC)研究的代谢组学数据,并使用看似不相关回归(SUR)来考虑包括性别、体重指数(BMI)、年龄、饮酒和吸烟等混杂因素的影响。

方法

基于使用靶向质谱法定量的113种血清代谢物建立的SUR模型,识别出20种能够区分CRC患者(n = 36)、息肉患者(n = 39)和健康受试者(n = 83)的代谢物。使用不同组生物学相关代谢物构建的模型实现了更好的区分,并且在29组中有26组具有显著性。此外,在应用SUR模型之前或之后,使用ParCorA算法为所有代谢物组构建的相关代谢物网络显示,CRC和息肉患者相对于健康对照有显著变化。

结果

结果表明,人口统计学协变量,如性别、BMI、BMI和吸烟状况,对代谢物水平表现出显著的混杂效应,这可以有效地进行建模。

结论

这些结果不仅为解决代谢组学分析中混杂效应这一主要问题提供了新的见解,还为在复杂疾病中建立可靠生物标志物及其之间的生物学联系相关问题提供了启示。

相似文献

2
Exploring Metabolic Profile Differences between Colorectal Polyp Patients and Controls Using Seemingly Unrelated Regression.
J Proteome Res. 2015 Jun 5;14(6):2492-9. doi: 10.1021/acs.jproteome.5b00059. Epub 2015 May 13.
3
Global and targeted serum metabolic profiling of colorectal cancer progression.
Cancer. 2017 Oct 15;123(20):4066-4074. doi: 10.1002/cncr.30829. Epub 2017 Jun 22.
5
Specificity of metabolic colorectal cancer biomarkers in serum through effect size.
Metabolomics. 2020 Aug 13;16(8):88. doi: 10.1007/s11306-020-01707-w.
6
Metabolomics Analysis in Serum from Patients with Colorectal Polyp and Colorectal Cancer by H-NMR Spectrometry.
Dis Markers. 2019 Apr 7;2019:3491852. doi: 10.1155/2019/3491852. eCollection 2019.
7
Advanced Statistical Methods for NMR-Based Metabolomics.
Methods Mol Biol. 2019;2037:471-482. doi: 10.1007/978-1-4939-9690-2_26.
9
Metabolomic Profiling Identified Serum Metabolite Biomarkers and Related Metabolic Pathways of Colorectal Cancer.
Dis Markers. 2021 Dec 7;2021:6858809. doi: 10.1155/2021/6858809. eCollection 2021.

引用本文的文献

1
Multi-omics profiles of chronic low back pain and fibromyalgia-Study protocol.
PLoS One. 2025 Apr 16;20(4):e0312061. doi: 10.1371/journal.pone.0312061. eCollection 2025.
2
3
Multi-Omics Profiles of Chronic Low Back Pain and Fibromyalgia - Study Protocol.
Res Sq. 2024 Jul 31:rs.3.rs-4669838. doi: 10.21203/rs.3.rs-4669838/v1.
5
Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2307430121. doi: 10.1073/pnas.2307430121. Epub 2024 Feb 15.
6
Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women.
Metabolites. 2023 Apr 3;13(4):514. doi: 10.3390/metabo13040514.
8
NMR Metabolomics Methods for Investigating Disease.
Anal Chem. 2023 Jan 10;95(1):83-99. doi: 10.1021/acs.analchem.2c04606.
9

本文引用的文献

1
Fundamentals of cancer metabolism.
Sci Adv. 2016 May 27;2(5):e1600200. doi: 10.1126/sciadv.1600200. eCollection 2016 May.
4
Exploring Metabolic Profile Differences between Colorectal Polyp Patients and Controls Using Seemingly Unrelated Regression.
J Proteome Res. 2015 Jun 5;14(6):2492-9. doi: 10.1021/acs.jproteome.5b00059. Epub 2015 May 13.
5
Colorectal cancer detection using targeted serum metabolic profiling.
J Proteome Res. 2014 Sep 5;13(9):4120-30. doi: 10.1021/pr500494u. Epub 2014 Aug 15.
6
A machine-learned predictor of colonic polyps based on urinary metabolomics.
Biomed Res Int. 2013;2013:303982. doi: 10.1155/2013/303982. Epub 2013 Nov 7.
7
Metabonomics identifies serum metabolite markers of colorectal cancer.
J Proteome Res. 2013 Jun 7;12(6):3000-9. doi: 10.1021/pr400337b. Epub 2013 May 29.
9
A novel serum metabolomics-based diagnostic approach for colorectal cancer.
PLoS One. 2012;7(7):e40459. doi: 10.1371/journal.pone.0040459. Epub 2012 Jul 11.
10
Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer.
Int J Cancer. 2013 Jan 15;132(2):355-62. doi: 10.1002/ijc.27673. Epub 2012 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验