Fialoke Suruchi, Malarstig Anders, Miller Melissa R, Dumitriu Alexandra
Pfizer, Cambridge, MA, USA.
AMIA Annu Symp Proc. 2018 Dec 5;2018:430-439. eCollection 2018.
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. NAFLD patients have excessive liver fat (steatosis), without other liver diseases and without excessive alcohol consumption. NAFLD consists of a spectrum of conditions: benign steatosis or non-alcoholic fatty liver (NAFL), steatosis accompanied by inflammation and fibrosis or nonalcoholic steatohepatitis (NASH), and cirrhosis. Given a lack of clinical biomarkers and its asymptomatic nature, NASH is under-diagnosed. We use electronic health records from the Optum Analytics to (1) identify patients diagnosed with benign steatosis and NASH, and (2) train machine learning classifiers for NASH and healthy (non-NASH) populations to (3) predict NASH disease status on patients diagnosed with NAFL. Summarized temporal lab data for alanine aminotransferase, aspartate aminotransferase, and platelet counts, with basic demographic information and type 2 diabetes status were included in the models.
非酒精性脂肪性肝病(NAFLD)是全球慢性肝病的主要病因。NAFLD患者肝脏脂肪过多(脂肪变性),无其他肝脏疾病且无过量饮酒史。NAFLD包括一系列病症:良性脂肪变性或非酒精性脂肪肝(NAFL)、伴有炎症和纤维化的脂肪变性或非酒精性脂肪性肝炎(NASH)以及肝硬化。由于缺乏临床生物标志物且其具有无症状性,NASH的诊断不足。我们使用Optum Analytics的电子健康记录来(1)识别诊断为良性脂肪变性和NASH的患者,以及(2)为NASH和健康(非NASH)人群训练机器学习分类器,以(3)预测诊断为NAFL的患者的NASH疾病状态。模型中纳入了丙氨酸氨基转移酶、天冬氨酸氨基转移酶和血小板计数的汇总时间实验室数据,以及基本人口统计学信息和2型糖尿病状态。