Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.
Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea.
Sci Rep. 2024 Jul 12;14(1):16122. doi: 10.1038/s41598-024-60768-2.
Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.
酒精相关肝病 (ALD) 和代谢功能障碍相关脂肪性肝病 (MASLD) 在全球范围内具有较高的患病率。由于肠道微生物群通过肠道-肝脏轴反映 ALD 和 MASLD 的当前状态,因此肠道微生物群的典型特征可以作为 ALD 和 MASLD 的潜在诊断标志物。机器学习 (ML) 算法可提高各种疾病的诊断性能。我们使用基于肠道微生物群的 ML 算法来评估 ALD 和 MASLD 的诊断指标。收集了 263 名 ALD(对照组、肝酶升高[ELE]、肝硬化和肝细胞癌[HCC])和 201 名 MASLD(对照组和 ELE)受试者的粪便 16S rRNA 测序数据。为了进行外部验证,招募了 126 名 ALD 和 84 名 MASLD 受试者。使用四种监督 ML 算法(支持向量机、随机森林、多层感知机和卷积神经网络),使用 20、40、60 和 80 个特征进行分类,其中三种非监督 ML 算法(独立成分分析、主成分分析、线性判别分析和随机投影)用于特征减少。对每组亚组的每个 ML 算法共进行了 52 次组合,有 60 次超参数变化和分层 ShuffleSplit 十折交叉验证。卷积神经网络与主成分分析相结合的 ML 模型的接收者操作特征曲线 (AUC)下面积(AUCs)均>0.90。在 ALD 中,ML 策略(与对照组相比)的诊断 AUC 值分别为 ELE、肝硬化和肝癌的 0.94、0.97 和 0.96。MASLD(ELE)的 AUC 值(与对照组相比)为 0.93。在外部验证中,ALD 和 MASLD(与对照组相比)的 AUC 值均>0.90 和 0.88。基于肠道微生物群的 ML 策略可用于 ALD 和 MASLD 的诊断。ClinicalTrials.gov NCT04339725。
Front Med (Lausanne). 2025-6-4
Microbiome Res Rep. 2025-2-27
Front Oncol. 2024-9-3
Hepatology. 2023-12-1
Nucleosides Nucleotides Nucleic Acids. 2023
Nat Med. 2022-6
Gut Microbes. 2022