文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于肠道微生物组的机器学习特征用于诊断酒精相关和代谢功能障碍相关脂肪性肝病。

Gut microbiota-based machine-learning signature for the diagnosis of alcohol-associated and metabolic dysfunction-associated steatotic liver disease.

机构信息

Department of Electrical Engineering, Hallym University, Gyo-dong, Chuncheon, 24253, Republic of Korea.

Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24253, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 12;14(1):16122. doi: 10.1038/s41598-024-60768-2.


DOI:10.1038/s41598-024-60768-2
PMID:38997279
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11245548/
Abstract

Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.

摘要

酒精相关肝病 (ALD) 和代谢功能障碍相关脂肪性肝病 (MASLD) 在全球范围内具有较高的患病率。由于肠道微生物群通过肠道-肝脏轴反映 ALD 和 MASLD 的当前状态,因此肠道微生物群的典型特征可以作为 ALD 和 MASLD 的潜在诊断标志物。机器学习 (ML) 算法可提高各种疾病的诊断性能。我们使用基于肠道微生物群的 ML 算法来评估 ALD 和 MASLD 的诊断指标。收集了 263 名 ALD(对照组、肝酶升高[ELE]、肝硬化和肝细胞癌[HCC])和 201 名 MASLD(对照组和 ELE)受试者的粪便 16S rRNA 测序数据。为了进行外部验证,招募了 126 名 ALD 和 84 名 MASLD 受试者。使用四种监督 ML 算法(支持向量机、随机森林、多层感知机和卷积神经网络),使用 20、40、60 和 80 个特征进行分类,其中三种非监督 ML 算法(独立成分分析、主成分分析、线性判别分析和随机投影)用于特征减少。对每组亚组的每个 ML 算法共进行了 52 次组合,有 60 次超参数变化和分层 ShuffleSplit 十折交叉验证。卷积神经网络与主成分分析相结合的 ML 模型的接收者操作特征曲线 (AUC)下面积(AUCs)均>0.90。在 ALD 中,ML 策略(与对照组相比)的诊断 AUC 值分别为 ELE、肝硬化和肝癌的 0.94、0.97 和 0.96。MASLD(ELE)的 AUC 值(与对照组相比)为 0.93。在外部验证中,ALD 和 MASLD(与对照组相比)的 AUC 值均>0.90 和 0.88。基于肠道微生物群的 ML 策略可用于 ALD 和 MASLD 的诊断。ClinicalTrials.gov NCT04339725。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/08e077845d7b/41598_2024_60768_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/445a8aeba1e2/41598_2024_60768_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/a90a8fd547a4/41598_2024_60768_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/5193cfbe8e66/41598_2024_60768_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/48d819fa61e0/41598_2024_60768_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/08e077845d7b/41598_2024_60768_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/445a8aeba1e2/41598_2024_60768_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/a90a8fd547a4/41598_2024_60768_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/5193cfbe8e66/41598_2024_60768_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/48d819fa61e0/41598_2024_60768_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/11245548/08e077845d7b/41598_2024_60768_Fig5_HTML.jpg

相似文献

[1]
Gut microbiota-based machine-learning signature for the diagnosis of alcohol-associated and metabolic dysfunction-associated steatotic liver disease.

Sci Rep. 2024-7-12

[2]
COMPARISON OF GUT MICROBIOTA IN ALCOHOLIC AND METABOLIC-DYSFUNCION ASSOCIATED STEATOTIC LIVER DISEASE IN ANIMAL MODELS.

Arq Gastroenterol. 2024

[3]
Agile scores in MASLD and ALD: External validation and their utility in clinical algorithms.

J Hepatol. 2024-10

[4]
Deciphering metabolic dysfunction-associated steatotic liver disease: insights from predictive modeling and clustering analysis.

J Gastroenterol Hepatol. 2024-7

[5]
Distinct Gut Microbial Signature and Host Genetic Variants in Association with Liver Fibrosis Severity in Patients with MASLD.

Nutrients. 2024-6-7

[6]
A gut microbiome signature for HIV and metabolic dysfunction-associated steatotic liver disease.

Front Immunol. 2023

[7]
Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Int J Mol Sci. 2024-4-16

[8]
Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus.

Gut Microbes. 2024

[9]
Misclassified Alcohol-related Liver Disease is Common in Presumed Metabolic Dysfunction-associated Steatotic Liver Disease and Highly Increases Risk for Future Cirrhosis.

Clin Gastroenterol Hepatol. 2024-5

[10]
Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease with Increased Alcohol Intake Increase the Risk of Developing Hepatocellular Carcinoma and Incident or Decompensated Cirrhosis: A Korean Nationwide Study.

Liver Cancer. 2023-12-22

引用本文的文献

[1]
Exploring the interplay between metabolic dysfunction-associated fatty liver disease and gut dysbiosis: Pathophysiology, clinical implications, and emerging therapies.

World J Hepatol. 2025-8-27

[2]
Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome.

BMC Microbiol. 2025-7-10

[3]
Gut microbiota in liver diseases: initiation, development and therapy.

Front Med (Lausanne). 2025-6-4

[4]
The Use of Non-i nvasive Biomarkers to Screen for Advanced Fibrosis Associated with Metabolic Dysfunction-associated Steatotic Liver Disease in People with Type 2 Diabetes: A Narrative Review.

touchREV Endocrinol. 2025-5

[5]
Meta-analysis of shotgun sequencing of gut microbiota in obese children with MASLD or MASH.

Gut Microbes. 2025-12

[6]
Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions.

Nutrients. 2025-5-4

[7]
The oncobiome; what, so what, now what?

Microbiome Res Rep. 2025-2-27

[8]
Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma.

BMC Cancer. 2024-11-29

[9]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

本文引用的文献

[1]
Changing from NAFLD to MASLD: Similar cumulative incidence of reflux esophagitis between NAFLD and MASLD.

Clin Mol Hepatol. 2024-1

[2]
Beyond body weight: Diversified presentation of MASLD in lean, overweight, and obese participants.

J Hepatol. 2024-4

[3]
Evaluation of metabolic dysfunction-associated steatotic liver disease (MASLD) terminology in different clinical settings.

J Hepatol. 2024-3

[4]
A multisociety Delphi consensus statement on new fatty liver disease nomenclature.

Hepatology. 2023-12-1

[5]
Artificial intelligence model with deep learning in nonalcoholic fatty liver disease diagnosis: genetic based artificial neural networks.

Nucleosides Nucleotides Nucleic Acids. 2023

[6]
Omics and AI advance biomarker discovery for liver disease.

Nat Med. 2022-6

[7]
Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder.

Hepatology. 2022-10

[8]
Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting.

Cell Metab. 2022-5-3

[9]
Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease.

Hepatol Int. 2022-6

[10]
Circulating microbiome in patients with portal hypertension.

Gut Microbes. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索