Suppr超能文献

利用句法关系进行临床概念检测的初步研究

A Preliminary Study of Clinical Concept Detection Using Syntactic Relations.

作者信息

Torii Manabu, Yang Elly W, Doan Son

机构信息

Medical Informatics, Kaiser Permanente Southern California, San Diego, CA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1028-1035. eCollection 2018.

Abstract

Concept detection is an integral step in natural language processing (NLP) applications in the clinical domain. Clinical concepts are detailed (e.g., "pain in left/right upper/lower arm/leg") and expressed in diverse phrase types (e.g., noun, verb, adjective, or prepositional phrase). There are rich terminological resources in the clinical domain that include many concept synonyms. Even with these resources, concept detection remains challenging due to discontinuous and/or permuted phrase occurrences. To overcome this challenge, we investigated an approach to exploiting syntactic information. Syntactic patterns of concept phrases were mined from continuous, non-permuted forms of synonyms, and these patterns were used to detect discontinuous and/or permuted concept phrases. Experiments on 790 de-identified clinical notes showed that the proposed approach can potentially boost a recall of concept detection. Meanwhile, challenges and limitations were noticed. In this paper, we report and discuss our preliminary analysis and finding.

摘要

概念检测是临床领域自然语言处理(NLP)应用中不可或缺的一步。临床概念详细具体(例如,“左/右上/下臂/腿部疼痛”),并以多种短语类型(如名词、动词、形容词或介词短语)表达。临床领域有丰富的术语资源,其中包含许多概念同义词。即便有这些资源,由于短语出现的不连续性和/或排列顺序的变化,概念检测仍然具有挑战性。为克服这一挑战,我们研究了一种利用句法信息的方法。从同义词的连续、未排列形式中挖掘概念短语的句法模式,并将这些模式用于检测不连续和/或排列的概念短语。对790份去标识化临床记录进行的实验表明,所提出的方法有可能提高概念检测的召回率。同时,也注意到了挑战和局限性。在本文中,我们报告并讨论了初步分析和发现。

相似文献

1
A Preliminary Study of Clinical Concept Detection Using Syntactic Relations.
AMIA Annu Symp Proc. 2018 Dec 5;2018:1028-1035. eCollection 2018.
2
Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.
3
Enhanced LexSynonym Acquisition for Effective UMLS Concept Mapping.
Stud Health Technol Inform. 2017;245:501-505.
4
Leveraging syntax to better capture the semantics of elliptical coordinated compound noun phrases.
J Biomed Inform. 2017 Aug;72:120-131. doi: 10.1016/j.jbi.2017.07.001. Epub 2017 Jul 4.
5
Semantic annotation for concept-based cross-language medical information retrieval.
Int J Med Inform. 2002 Dec 4;67(1-3):97-112. doi: 10.1016/s1386-5056(02)00058-8.
6
Improving search over Electronic Health Records using UMLS-based query expansion through random walks.
J Biomed Inform. 2014 Oct;51:100-6. doi: 10.1016/j.jbi.2014.04.013. Epub 2014 Apr 21.
8
Finding the meaning of medical concept correlations.
AMIA Annu Symp Proc. 2008 Nov 6;2008:830-4.
9
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.
10
Minimalistic Approach to Coreference Resolution in Lithuanian Medical Records.
Comput Math Methods Med. 2019 Mar 20;2019:9079840. doi: 10.1155/2019/9079840. eCollection 2019.

引用本文的文献

3
A corpus-driven standardization framework for encoding clinical problems with HL7 FHIR.
J Biomed Inform. 2020 Oct;110:103541. doi: 10.1016/j.jbi.2020.103541. Epub 2020 Aug 16.

本文引用的文献

1
MetaMap Lite: an evaluation of a new Java implementation of MetaMap.
J Am Med Inform Assoc. 2017 Jul 1;24(4):841-844. doi: 10.1093/jamia/ocw177.
2
NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.
BMC Bioinformatics. 2016 Jan 14;17:32. doi: 10.1186/s12859-015-0871-y.
3
Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S20-S29. doi: 10.1016/j.jbi.2015.07.020. Epub 2015 Aug 28.
4
Sophia: A Expedient UMLS Concept Extraction Annotator.
AMIA Annu Symp Proc. 2014 Nov 14;2014:467-76. eCollection 2014.
5
DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx.
J Biomed Inform. 2015 Apr;54:213-9. doi: 10.1016/j.jbi.2015.02.010. Epub 2015 Mar 16.
7
DNorm: disease name normalization with pairwise learning to rank.
Bioinformatics. 2013 Nov 15;29(22):2909-17. doi: 10.1093/bioinformatics/btt474. Epub 2013 Aug 21.
8
Syntactic parsing of clinical text: guideline and corpus development with handling ill-formed sentences.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1168-77. doi: 10.1136/amiajnl-2013-001810. Epub 2013 Aug 1.
9
Towards comprehensive syntactic and semantic annotations of the clinical narrative.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):922-30. doi: 10.1136/amiajnl-2012-001317. Epub 2013 Jan 25.
10
Syntactic dependency parsers for biomedical-NLP.
AMIA Annu Symp Proc. 2012;2012:121-8. Epub 2012 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验