Suppr超能文献

通过菌株改良提高L-亮氨酸氨肽酶和蛋白酶的产量。

Strain improvement of for increased l-leucine aminopeptidase and protease production.

作者信息

Lim Jaeho, Choi Yong-Ho, Hurh Byung-Serk, Lee Inhyung

机构信息

1Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707 Korea.

Sempio Fermentation Research Center, Sempio Foods Company, Osong, Chungcheongbukdo 28156 Korea.

出版信息

Food Sci Biotechnol. 2018 Jul 12;28(1):121-128. doi: 10.1007/s10068-018-0427-9. eCollection 2019 Feb.

Abstract

Conventional random mutagenesis was implemented to improve l-leucine aminopeptidase (LAP) and protease production in . Through successive mutagenesis by ethyl methanesulfonate (EMS), UV, and 1-methyl-2-nitro-1-nitrosoguanidine (NTG), EMS25, EU36, and EUN13 mutants from each mutagenesis process were screened using a newly developed quick and easy screening method. The mutant EUN13 exhibited a 9.6-fold increase in LAP [50.61 ± 4.36 U/g-initial dried substrate (IDS)] and a 3.8-fold increase in protease production (13.36 ± 0.31 U/g-IDS) on solid-state fermentation. This mutant showed more frequent branching and higher mRNA expression as compared to the parent strain SMF 131, which at least in part contributed to the increased LAP and protease production. The mutant EUN13 can be used as a starter organism for diverse industrial soybean fermentation processes for the production of conventional products such as , , and as well as for the production of new fermented soybean-based sauces.

摘要

采用传统随机诱变方法提高[具体微生物名称]中L-亮氨酸氨基肽酶(LAP)和蛋白酶的产量。通过甲磺酸乙酯(EMS)、紫外线(UV)和1-甲基-2-硝基-1-亚硝基胍(NTG)进行连续诱变,利用新开发的快速简便筛选方法从每个诱变过程中筛选出EMS25、EU36和EUN13突变体。在固态发酵中,突变体EUN13的LAP产量提高了9.6倍[50.61±4.36 U/g初始干底物(IDS)],蛋白酶产量提高了3.8倍(13.36±0.31 U/g IDS)。与亲本菌株SMF 131相比,该突变体表现出更频繁的分支和更高的mRNA表达,这至少部分导致了LAP和蛋白酶产量的增加。突变体EUN13可作为多种工业大豆发酵过程的起始菌株,用于生产传统产品如[具体传统产品名称1]、[具体传统产品名称2]和[具体传统产品名称3],以及用于生产新型发酵大豆基调味酱。

相似文献

1
Strain improvement of for increased l-leucine aminopeptidase and protease production.
Food Sci Biotechnol. 2018 Jul 12;28(1):121-128. doi: 10.1007/s10068-018-0427-9. eCollection 2019 Feb.
2
Characterization of Isolated from Meju, Korean Traditional Fermented Soybean Brick.
J Microbiol Biotechnol. 2017 Feb 28;27(2):251-261. doi: 10.4014/jmb.1610.10013.
3
Whole genome analysis of Aspergillus sojae SMF 134 supports its merits as a starter for soybean fermentation.
J Microbiol. 2019 Oct;57(10):874-883. doi: 10.1007/s12275-019-9152-1. Epub 2019 Jun 27.
4
Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.
Appl Microbiol Biotechnol. 2014 Sep;98(17):7471-81. doi: 10.1007/s00253-014-5657-z. Epub 2014 Apr 4.
5
Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation.
J Microbiol Biotechnol. 2024 Mar 28;34(3):654-662. doi: 10.4014/jmb.2309.09008. Epub 2023 Dec 26.
6
l-leucine aminopeptidase production by filamentous Aspergillus fungi.
Lett Appl Microbiol. 2005;41(6):498-504. doi: 10.1111/j.1472-765X.2005.01789.x.
7
Metabolomic assessment of fermentative capability of soybean starter treated with high pressure.
J Agric Food Chem. 2010 Aug 11;58(15):8738-47. doi: 10.1021/jf101994u.
9
Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae.
Biochim Biophys Acta. 2002 Jun 7;1576(1-2):119-26. doi: 10.1016/s0167-4781(02)00307-x.

本文引用的文献

1
Characterization of Isolated from Meju, Korean Traditional Fermented Soybean Brick.
J Microbiol Biotechnol. 2017 Feb 28;27(2):251-261. doi: 10.4014/jmb.1610.10013.
2
Overexpression of the laeA gene leads to increased production of cyclopiazonic acid in Aspergillus fumisynnematus.
Fungal Biol. 2015 Nov;119(11):973-983. doi: 10.1016/j.funbio.2015.06.006. Epub 2015 Jun 23.
3
Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.
Appl Microbiol Biotechnol. 2014 Sep;98(17):7471-81. doi: 10.1007/s00253-014-5657-z. Epub 2014 Apr 4.
5
Production of recombinant proteins by filamentous fungi.
Biotechnol Adv. 2012 Sep-Oct;30(5):1119-39. doi: 10.1016/j.biotechadv.2011.09.012. Epub 2011 Sep 24.
6
Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239.
DNA Res. 2011 Jun;18(3):165-76. doi: 10.1093/dnares/dsr009.
9
Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16151-6. doi: 10.1073/pnas.0905848106. Epub 2009 Sep 2.
10
HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production.
Fungal Genet Biol. 2009 Oct;46(10):782-90. doi: 10.1016/j.fgb.2009.06.007. Epub 2009 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验