Suppr超能文献

基于气溶胶技术的碳包覆中空介孔硅纳米粒子用于协同化学-光热治疗。

Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy.

机构信息

College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea.

College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea.

出版信息

Acta Biomater. 2019 Apr 1;88:448-461. doi: 10.1016/j.actbio.2019.02.029. Epub 2019 Feb 26.

Abstract

Near-infrared (NIR)-responsive drug delivery systems have enhanced tumor ablative efficiency through permeation and retention effects. Graphene oxide (GO) has shown great potential both in photothermal therapy and in drug delivery. Thus, in this study, we designed an ambient spark-generated GO, wrapped on topotecan (TPT)-loaded hollow mesoporous silica nanoparticles (HMSN-NH2-TPT-CGO), to function as an efficient platform for pH-dependent sustained release of TPT. HMSN-NH2-TPT-CGO also exhibited a combined chemo-photothermal effect within a single carrier system. This developed system was stable with a uniform particle size (∼190 nm) and was demonstrated to possess a sufficient heat-absorbing capacity to induce tumor cell ablation. We performed the ablation of tumor cells both in vitro and in vivo in combination with photothermal therapy and chemotherapy using the spark-generated functional GO and HMSN. The prepared nanocarriers demonstrated high cellular uptake, apoptosis, and G0/G1 cell cycle arrest. In vivo study using the MDA-MB-231 xenograft model revealed the ultraefficient tumor ablative performance of HMSN-NH2-TPT-CGO compared with that of free TPT, with no toxic effect on vital organs. Altogether, the optimized nanocarriers presented a significant potential to act as a vehicle for cancer treatment. STATEMENT OF SIGNIFICANCE: This is the first study that uses spark-generated graphene oxide nanoflakes to cover the topotecan (TPT)-loaded hollow mesoporous silica nanoparticles (HMSNs) to treat breast cancer. Dense silica was used as a hard template to prepare the HMSNs attributing to a high drug payload. The concentration of NaCO was precisely controlled to minimize the silica etching time within 70 min. The use of the nanographene flakes served a dual purpose, first, by acting as a capping agent to prevent the premature release of drug and, second, by serving as a nano heater that significantly ablates the tumor cells. The prepared nanocarriers (NCs) exhibited effective and enhanced in vitro and in vivo apoptosis, as well as significant tumor growth inhibition even after 15 days of treatment time, with no toxic effect to the vital organs. The NCs enhanced in vitro tumor cell killing effects and served as an effective carrier for in vivo tumor regression, thereby highlighting the enormous potential of this system for breast cancer therapy.

摘要

近红外(NIR)响应药物输送系统通过渗透和保留效应提高了肿瘤消融效率。氧化石墨烯(GO)在光热治疗和药物输送方面都显示出巨大的潜力。因此,在本研究中,我们设计了一种环境火花生成的 GO,包裹在负载拓扑替康(TPT)的中空介孔硅纳米粒子(HMSN-NH2-TPT-CGO)上,作为一种高效的平台,用于 pH 依赖性的 TPT 持续释放。HMSN-NH2-TPT-CGO 还在单个载体系统中表现出化学-光热联合效应。该系统具有稳定的粒径(约 190nm)和足够的吸热量,可诱导肿瘤细胞消融。我们通过光热治疗和化疗联合使用火花生成的功能 GO 和 HMSN 在体外和体内对肿瘤细胞进行了消融。所制备的纳米载体表现出高细胞摄取、细胞凋亡和 G0/G1 细胞周期阻滞。使用 MDA-MB-231 异种移植模型的体内研究表明,与游离 TPT 相比,HMSN-NH2-TPT-CGO 具有超高效的肿瘤消融性能,对重要器官没有毒性作用。总之,优化的纳米载体具有作为癌症治疗载体的巨大潜力。

声明的意义

这是第一项使用火花生成的氧化石墨烯纳米片覆盖负载拓扑替康(TPT)的中空介孔硅纳米粒子(HMSNs)治疗乳腺癌的研究。致密的二氧化硅被用作硬模板来制备 HMSNs,从而实现了高载药量。精确控制 NaCO 的浓度以将二氧化硅的蚀刻时间最小化至 70min。使用纳米石墨烯片具有双重作用,首先,作为封端剂以防止药物过早释放,其次,作为纳米加热器,可显著消融肿瘤细胞。所制备的纳米载体(NCs)表现出有效的体外和体内细胞凋亡作用,以及显著的肿瘤生长抑制作用,即使在 15 天的治疗时间后也没有对重要器官产生毒性作用。NCs 增强了体外肿瘤细胞杀伤效果,并且作为体内肿瘤消退的有效载体,从而突出了该系统在乳腺癌治疗中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验