文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态介孔硅纳米载体用于双重刺激响应药物释放和优异的癌细胞光热消融。

Multimodal Mesoporous Silica Nanocarriers for Dual Stimuli-Responsive Drug Release and Excellent Photothermal Ablation of Cancer Cells.

机构信息

Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of Korea.

NTTHi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh 700000, Vietnam.

出版信息

Int J Nanomedicine. 2020 Oct 8;15:7667-7685. doi: 10.2147/IJN.S254344. eCollection 2020.


DOI:10.2147/IJN.S254344
PMID:33116494
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7549887/
Abstract

BACKGROUND: Core-shell types of mesoporous silica nanoparticles (MSNs) with multimodal functionalities were developed for bio-imaging, controlled drug release associated with external pH, and near-infrared radiation (NIR) stimuli, and targeted and effective chemo-photothermal therapeutics. MATERIALS AND METHODS: We synthesized and developed a core-shell type of mesoporous silica nanocarriers for fluorescent imaging, stimuli-responsive drug release, magnetic separation, antibody targeting, and chemo-photothermal therapeutics. Also, the biocompatibility, cellular uptake, cytotoxicity, and photothermal therapy on these FS3-based nanocarriers were systematically investigated. RESULTS: Magnetic mesoporous silica nanoparticles was prepared by coating a FeO core with a mesoporous silica shell, followed by grafting with fluorescent conjugates, so-called FS3. The resulting FM3 was preloaded with therapeutic cisplatin and coated with polydopamine layer, so-called FS3P/C. Eventually, graphene oxide-wrapped FS3P/C (FS3P-G/C) exhibited high sensitivity in the dual stimuli (pH, NIR)-responsive controlled release behavior. On the other hand, Au NPs-coated FS3P/C (FS3P-A/C) exhibited more stable release behavior, irrespective of pH changes, and exhibited much more enhanced release rate under the same NIR irradiation. Notably, FS3P-A/C showed strong NIR absorption, enabling photothermal destruction of HeLa cells by its chemo-photothermal therapeutic effects under NIR irradiation (808 nm, 1.5 W/cm). The selective uptake of FS3-based nanocarriers was confirmed in cancer cell lines including HeLa (American Type Culture Collection - ATCC) and SHSY5Y (ATCC 2266) by the images obtained from confocal laser scanning microscopy, flow cytometry, and transmission electron microscopy instruments. Cisplatin-free FS3-based nanocarriers revealed good cellular uptake and low cytotoxicity against cancerous HeLa and SH-SY5Y cells, but showed no obvious toxicity to normal HEK293 (ATCC 1573) cell. CONCLUSION: Along with the facile synthesis of FS3-based nanocarriers, the integration of all these strategies into one single unit will be a prospective candidate for biomedical applications, especially in chemo-photothermal therapeutics, targeted delivery, and stimuli-responsive controlled drug release against multiple cancer cell types.

摘要

背景:开发了具有多模态功能的核壳型介孔硅纳米粒子(MSNs)用于生物成像、与外部 pH 值相关的控制药物释放以及近红外辐射(NIR)刺激、靶向和有效的化学-光热治疗。

材料与方法:我们合成并开发了一种核壳型介孔硅纳米载体用于荧光成像、刺激响应药物释放、磁分离、抗体靶向和化学-光热治疗。此外,还系统研究了基于 FS3 的这些纳米载体的生物相容性、细胞摄取、细胞毒性和光热治疗。

结果:通过在 FeO 核上包覆介孔硅壳,然后接枝荧光化合物,制备了磁性介孔硅纳米粒子,称为 FS3。所得 FM3 预载有治疗性顺铂,并包覆聚多巴胺层,称为 FS3P/C。最终,氧化石墨烯包裹的 FS3P/C(FS3P-G/C)表现出在双刺激(pH、NIR)响应控制释放行为中的高灵敏度。另一方面,Au NPs 包覆的 FS3P/C(FS3P-A/C)表现出更稳定的释放行为,与 pH 变化无关,并且在相同的 NIR 照射下表现出更高的释放速率。值得注意的是,FS3P-A/C 表现出很强的 NIR 吸收,使其能够通过化学-光热治疗效果在 NIR 照射(808nm,1.5W/cm)下破坏 HeLa 细胞。通过共聚焦激光扫描显微镜、流式细胞术和透射电子显微镜仪器获得的图像证实了 FS3 基纳米载体在包括 HeLa(美国模式培养物集存库-ATCC)和 SHSY5Y(ATCC 2266)在内的癌细胞系中的选择性摄取。无顺铂的 FS3 基纳米载体对癌细胞 HeLa 和 SH-SY5Y 表现出良好的细胞摄取和低细胞毒性,但对正常 HEK293(ATCC 1573)细胞没有明显毒性。

结论:随着 FS3 基纳米载体的简便合成,将所有这些策略集成到一个单元中,将成为生物医学应用的有前途的候选者,特别是在化学-光热治疗、靶向递送和针对多种癌细胞类型的刺激响应控制药物释放方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/4c148abfb029/IJN-15-7667-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/9089bd39f153/IJN-15-7667-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/4f3268ac79f9/IJN-15-7667-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/28dce560e840/IJN-15-7667-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/dcc9f5545cf2/IJN-15-7667-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/be2df2769785/IJN-15-7667-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/e33a85812d1b/IJN-15-7667-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/4c148abfb029/IJN-15-7667-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/9089bd39f153/IJN-15-7667-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/4f3268ac79f9/IJN-15-7667-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/28dce560e840/IJN-15-7667-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/dcc9f5545cf2/IJN-15-7667-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/be2df2769785/IJN-15-7667-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/e33a85812d1b/IJN-15-7667-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3e/7549887/4c148abfb029/IJN-15-7667-g0007.jpg

相似文献

[1]
Multimodal Mesoporous Silica Nanocarriers for Dual Stimuli-Responsive Drug Release and Excellent Photothermal Ablation of Cancer Cells.

Int J Nanomedicine. 2020-10-8

[2]
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers.

Acta Biomater. 2018-5-21

[3]
Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy.

Acta Biomater. 2019-2-26

[4]
Fabricating polydopamine-coated MoSe-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy.

Int J Nanomedicine. 2018-11-16

[5]
Fabrication of Rhenium Disulfide/Mesoporous Silica Core-Shell Nanoparticles for a pH-Responsive Drug Release and Combined Chemo-Photothermal Therapy.

ACS Appl Bio Mater. 2024-5-20

[6]
Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy.

Int J Nanomedicine. 2018-10-4

[7]
Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor.

Colloids Surf B Biointerfaces. 2020-6

[8]
Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy.

Nanoscale. 2014-8-7

[9]
Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy.

Mater Sci Eng C Mater Biol Appl. 2019-8-22

[10]
Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy.

J Colloid Interface Sci. 2017-8-16

引用本文的文献

[1]
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger.

Polymers (Basel). 2025-6-13

[2]
Frontiers in Preparations and Promising Applications of Mesoporous Polydopamine for Cancer Diagnosis and Treatment.

Pharmaceutics. 2022-12-21

[3]
Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects.

Front Immunol. 2022

[4]
How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2022

[5]
Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells.

Pharmaceutics. 2022-4-13

[6]
pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid.

RSC Adv. 2021-3-1

[7]
Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics.

J Nanobiotechnology. 2021-11-24

[8]
Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing.

Int J Mol Sci. 2021-10-19

[9]
Mesoporous bioactive glasses for regenerative medicine.

Mater Today Bio. 2021-6-29

[10]
Quo Vadis Advanced Prostate Cancer Therapy? Novel Treatment Perspectives and Possible Future Directions.

Molecules. 2021-4-12

本文引用的文献

[1]
Potential Antimicrobial and Anticancer Activities of an Ethanol Extract from .

Molecules. 2020-4-24

[2]
Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes.

J Mater Chem B. 2015-3-7

[3]
Tumor targeting dual stimuli responsive controllable release nanoplatform based on DNA-conjugated reduced graphene oxide for chemo-photothermal synergetic cancer therapy.

J Mater Chem B. 2018-7-14

[4]
Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles.

Int J Nanomedicine. 2019-5-8

[5]
Polydopamine-Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments.

Adv Sci (Weinh). 2018-8-16

[6]
Application of polydopamine in tumor targeted drug delivery system and its drug release behavior.

J Control Release. 2018-10-9

[7]
pH-Controlled Drug Release by Diffusion through Silica Nanochannel Membranes.

ACS Appl Mater Interfaces. 2018-9-26

[8]
Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis.

Artif Cells Nanomed Biotechnol. 2018-9-5

[9]
Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase.

Nanoscale. 2018-7-5

[10]
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers.

Acta Biomater. 2018-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索