Department of Computer Science and Technology, Huaqiao University, Xiamen 361000, China.
Xiamen Key Laboratory of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen 361000, China.
Sensors (Basel). 2019 Feb 27;19(5):1005. doi: 10.3390/s19051005.
Although widely used in many applications, accurate and efficient human action recognition remains a challenging area of research in the field of computer vision. Most recent surveys have focused on narrow problems such as human action recognition methods using depth data, 3D-skeleton data, still image data, spatiotemporal interest point-based methods, and human walking motion recognition. However, there has been no systematic survey of human action recognition. To this end, we present a thorough review of human action recognition methods and provide a comprehensive overview of recent approaches in human action recognition research, including progress in hand-designed action features in RGB and depth data, current deep learning-based action feature representation methods, advances in human⁻object interaction recognition methods, and the current prominent research topic of action detection methods. Finally, we present several analysis recommendations for researchers. This survey paper provides an essential reference for those interested in further research on human action recognition.
尽管在许多应用中得到了广泛应用,但准确和高效的人体动作识别仍然是计算机视觉领域的一个具有挑战性的研究领域。最近的大多数调查都集中在一些狭隘的问题上,如使用深度数据、3D 骨骼数据、静态图像数据、基于时空兴趣点的方法和人体行走运动识别的人体动作识别方法。然而,目前还没有对人体动作识别进行系统的调查。为此,我们对人体动作识别方法进行了全面的回顾,并对人体动作识别研究的最新方法进行了全面概述,包括在 RGB 和深度数据中使用手工设计的动作特征的进展、基于当前深度学习的动作特征表示方法、人体-物体交互识别方法的进展,以及当前动作检测方法的突出研究课题。最后,我们为研究人员提出了一些分析建议。本文综述为有兴趣进一步研究人体动作识别的研究人员提供了重要参考。