Suppr超能文献

深度学习心电图算法检测左心室收缩功能障碍的前瞻性验证。

Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction.

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.

Department of Health Sciences Research, Division of Health Care Policy and Research, Mayo Clinic, Rochester, Minnesota.

出版信息

J Cardiovasc Electrophysiol. 2019 May;30(5):668-674. doi: 10.1111/jce.13889. Epub 2019 Mar 10.

Abstract

OBJECTIVES

We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram (ECG) in a large prospective cohort.

BACKGROUND

Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging.

METHODS

We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new "positive screens."

RESULTS

Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 "false-positives screens," 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT-pro-BNP after the initial "positive screen."

CONCLUSIONS

A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.

摘要

目的

我们旨在验证一种深度学习算法,该算法基于 12 导联心电图(ECG)预测射血分数(EF)≤35%,并在一个大型前瞻性队列中进行验证。

背景

接受常规 ECG 的患者可能存在未被发现的左心室(LV)功能障碍,需要进一步进行超声心动图评估。然而,识别这些患者可能具有挑战性。

方法

我们将该算法应用于 2018 年 9 月梅奥诊所 ECG 实验室解读的所有 ECG。该算法的性能在近期进行 LV 功能超声心动图评估的患者中进行了测试。我们还在近期未进行 LV 功能超声心动图评估的患者中应用该算法,以确定新的“阳性筛查”率。

结果

在 16056 名接受常规 ECG 的成年患者中,8600 名患者(年龄 67.1±15.2 岁,45.6%为男性)进行了经胸超声心动图(TTE)检查,其中 3874 名患者在 TTE 检查后 1 个月内进行了 ECG 检查。在这些患者中,该算法能够以 86.8%的特异性、82.5%的敏感性和 86.5%的准确性检测到 EF≤35%(曲线下面积为 0.918)。在 474 次“假阳性筛查”中,有 189 次(39.8%)EF 为 36%至 50%。在没有先前 TTE 的患者中,该算法识别出 3.5%的疑似 EF≤35%的患者。探索性分析表明,在初次“阳性筛查”后评估 NT-pro-BNP 可以减少假阳性。

结论

深度学习算法在常规实践中检测 LV 功能障碍的准确率较高。需要进一步的研究来验证该算法在没有先前超声心动图的患者中的效果,并评估其对超声心动图的应用、成本和临床结局的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验