Suppr超能文献

用于育龄女性孕前心肌病筛查的人工智能工具

Artificial Intelligence Tools for Preconception Cardiomyopathy Screening Among Women of Reproductive Age.

作者信息

Kinaszczuk Anja, Morales-Lara Andrea Carolina, Garzon-Siatoya Wendy Tatiana, El-Attar Sara, Clapp Adrianna D, Olutola Ifeloluwa A, Moerer Ryan, Johnson Patrick, Wieczorek Mikolaj A, Attia Zachi I, Lopez-Jimenez Francisco, Friedman Paul A, Carter Rickey E, Noseworthy Peter A, Adedinsewo Demilade

机构信息

Department of Family Medicine, Mayo Clinic, Jacksonville, Florida (Kinaszczuk, Clapp, Olutola).

Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida (Morales-Lara, Garzon-Siatoya, El-Attar, Adedinsewo).

出版信息

Ann Fam Med. 2025 May 27;23(3):246-254. doi: 10.1370/afm.230627.

Abstract

PURPOSE

Identifying cardiovascular disease before conception and in early pregnancy can better inform obstetric cardiovascular care. Our main objective was to evaluate the diagnostic performance of artificial intelligence (AI)-enabled digital tools for detecting left ventricular systolic dysfunction (LVSD) among women of reproductive age.

METHODS

In a pilot cross-sectional study, we enrolled an initial cohort of 100 consecutive women aged 18-49 years who had a primary care physician and a scheduled echocardiography at Mayo Clinic Florida (Jacksonville) (cohort 1). Twelve-lead electrocardiography (ECG) and digital stethoscope recordings (single-lead ECG + phonocardiography) were performed on the date of echocardiography. We used deep learning to generate prediction probabilities for LVSD (defined as left ventricular ejection fraction <50%) for the 12-lead ECG (AI-ECG) and stethoscope (AI-stethoscope) recordings. In a second cohort of 100 participants, we enrolled consecutive women seen in primary care to estimate the prevalence of positive AI screening results when deployed for routine use (cohort 2).

RESULTS

The median age of participants was 38.6 years (quartile 1: 30.3 years, quartile 3: 45.5 years), and 71.9% identified as part of the non-Hispanic White population. Among cohort 1, 5% had LVSD. The AI-ECG had an area under the curve of 0.94, and the AI-stethoscope (maximum prediction across all chest locations) had an area under the curve of 0.98. Among cohort 2, the prevalence of a positive AI screen was 1% and 3.2% for AI-ECG and the AI-stethoscope, respectively.

CONCLUSION

We found these AI tools to be effective for the detection of cardiomyopathy associated with LVSD among women of reproductive age. These tools could potentially be useful for preconception cardiovascular evaluations.

摘要

目的

在受孕前和妊娠早期识别心血管疾病可以为产科心血管护理提供更充分的信息。我们的主要目标是评估基于人工智能(AI)的数字工具在检测育龄女性左心室收缩功能障碍(LVSD)方面的诊断性能。

方法

在一项试点横断面研究中,我们纳入了首批连续100名年龄在18至49岁之间的女性,她们在佛罗里达州梅奥诊所(杰克逊维尔)有初级保健医生且安排了超声心动图检查(队列1)。在超声心动图检查当天进行了12导联心电图(ECG)和数字听诊器记录(单导联ECG + 心音图)。我们使用深度学习为12导联ECG(AI-ECG)和听诊器(AI-听诊器)记录生成LVSD(定义为左心室射血分数<50%)的预测概率。在第二个由100名参与者组成的队列中,我们纳入了在初级保健中就诊的连续女性,以估计将这些工具用于常规使用时AI筛查阳性结果的患病率(队列2)。

结果

参与者的中位年龄为38.6岁(四分位数1:30.3岁,四分位数3:45.5岁),71.9%被认定为非西班牙裔白人。在队列1中,5%患有LVSD。AI-ECG的曲线下面积为0.94,AI-听诊器(所有胸部位置的最大预测值)的曲线下面积为0.98。在队列2中,AI-ECG和AI-听诊器的AI筛查阳性患病率分别为1%和3.2%。

结论

我们发现这些AI工具在检测育龄女性中与LVSD相关的心肌病方面是有效的。这些工具可能对孕前心血管评估有用。

相似文献

2
3
Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population.
Mayo Clin Proc. 2021 Oct;96(10):2576-2586. doi: 10.1016/j.mayocp.2021.02.029. Epub 2021 Jun 10.
5
Artificial intelligence-based screening for cardiomyopathy in an obstetric population: A pilot study.
Cardiovasc Digit Health J. 2024 Apr 5;5(3):132-140. doi: 10.1016/j.cvdhj.2024.03.005. eCollection 2024 Jun.
6
Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-The SaMi-Trop cohort.
PLoS Negl Trop Dis. 2021 Dec 6;15(12):e0009974. doi: 10.1371/journal.pntd.0009974. eCollection 2021 Dec.
8
Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.
Circ Cardiovasc Qual Outcomes. 2025 Jan;18(1):e011504. doi: 10.1161/CIRCOUTCOMES.124.011504. Epub 2024 Sep 2.
9
Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy.
Am J Obstet Gynecol MFM. 2023 Dec;5(12):101184. doi: 10.1016/j.ajogmf.2023.101184. Epub 2023 Oct 30.

引用本文的文献

1
Information Technology in Primary Care Screenings: Ready for Prime Time?
Ann Fam Med. 2025 May 27;23(3):179-180. doi: 10.1370/afm.250198.

本文引用的文献

2
Artificial intelligence-based screening for cardiomyopathy in an obstetric population: A pilot study.
Cardiovasc Digit Health J. 2024 Apr 5;5(3):132-140. doi: 10.1016/j.cvdhj.2024.03.005. eCollection 2024 Jun.
4
Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features.
Eur Heart J Digit Health. 2020 Dec 10;2(1):106-116. doi: 10.1093/ehjdh/ztaa015. eCollection 2021 Mar.
7
Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model.
Eur Heart J Digit Health. 2021 Aug 27;2(4):586-596. doi: 10.1093/ehjdh/ztab078. eCollection 2021 Dec.
8
Racial and Ethnic Disparities in Maternal Mortality in the United States Using Enhanced Vital Records, 2016‒2017.
Am J Public Health. 2021 Sep;111(9):1673-1681. doi: 10.2105/AJPH.2021.306375. Epub 2021 Aug 12.
9
Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction.
Mayo Clin Proc. 2021 Jul;96(7):1835-1844. doi: 10.1016/j.mayocp.2020.11.032. Epub 2021 Jun 9.
10
Intersection of Heart Failure and Pregnancy: Beyond Peripartum Cardiomyopathy.
Circ Heart Fail. 2021 May;14(5):e008223. doi: 10.1161/CIRCHEARTFAILURE.120.008223. Epub 2021 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验