Suppr超能文献

用于 3D 打印聚苯乙烯结构的表面功能化策略的开发。

Development of surface functionalization strategies for 3D-printed polystyrene constructs.

机构信息

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland.

Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland.

出版信息

J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2566-2578. doi: 10.1002/jbm.b.34347. Epub 2019 Mar 1.

Abstract

There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of deposited human mesenchymal stem cells, if the surface has a water contact angle between 50° and 55°. Translation of these findings to custom-fabricated 3D PS scaffolds reveals carbonyl groups continued to enhance spreading and growth in 3D culture. Cumulatively, these data present a method for 3D printing PS and the design considerations required for understanding cell-material interactions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2566-2578, 2019.

摘要

人们对 3D 打印制造培养基越来越感兴趣;然而,支架的表面性质对于引发目标明确且预期的细胞反应仍然很重要。传统的二维聚苯乙烯(PS)培养系统通常需要表面功能化(氧化)以促进和鼓励细胞黏附。确定从培养基和细胞细胞外基质(ECM)产生中增强蛋白质黏附的表面性质仍然是将 2D PS 系统转化为 3D 培养表面的第一步。在这里,我们表明 PS 表面的羰基基团的存在与 ECM 蛋白的成功黏附和沉积的人骨髓间充质干细胞的 ECM 产生密切相关,如果表面的水接触角在 50°和 55°之间。将这些发现转化为定制的 3D PS 支架,揭示了羰基基团继续增强 3D 培养中的细胞扩散和生长。总之,这些数据为 PS 的 3D 打印提供了一种方法,以及理解细胞-材料相互作用所需的设计考虑因素。2019 年 Wiley 期刊公司。J 生物医学材料研究 B 部分:应用生物材料 107B:2566-2578.

相似文献

1
Development of surface functionalization strategies for 3D-printed polystyrene constructs.
J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2566-2578. doi: 10.1002/jbm.b.34347. Epub 2019 Mar 1.
2
Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation.
Tissue Eng Part C Methods. 2020 Feb;26(2):118-131. doi: 10.1089/ten.tec.2019.0217. Epub 2020 Jan 22.
3
Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
J Biomed Mater Res B Appl Biomater. 2018 Jul;106(5):1788-1798. doi: 10.1002/jbm.b.33994. Epub 2017 Sep 13.
4
Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen.
J Biomed Mater Res B Appl Biomater. 2019 Jan;107(1):37-49. doi: 10.1002/jbm.b.34093. Epub 2018 Feb 26.
5
Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique.
J Biomed Mater Res B Appl Biomater. 2019 May;107(4):1295-1303. doi: 10.1002/jbm.b.34222. Epub 2018 Sep 27.
6
Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.
J Biomed Mater Res A. 2016 Jun;104(6):1343-51. doi: 10.1002/jbm.a.35664. Epub 2016 Feb 12.
7
Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
Acta Biomater. 2016 Dec;46:256-265. doi: 10.1016/j.actbio.2016.09.030. Epub 2016 Sep 22.
8
The Evolution of Polystyrene as a Cell Culture Material.
Tissue Eng Part B Rev. 2018 Oct;24(5):359-372. doi: 10.1089/ten.TEB.2018.0056.
10
Influence of scaffold design on 3D printed cell constructs.
J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):533-545. doi: 10.1002/jbm.b.33863. Epub 2017 Feb 14.

引用本文的文献

1
Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9173-9188. doi: 10.1021/acsami.5c00391. Epub 2025 Jan 30.
2
Strategies To Modify the Surface and Bulk Properties of 3D-Printed Solid Scaffolds for Tissue Engineering Applications.
ACS Omega. 2023 Jan 30;8(6):5139-5156. doi: 10.1021/acsomega.2c05984. eCollection 2023 Feb 14.
3
Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential.
APL Bioeng. 2020 Feb 10;4(1):010901. doi: 10.1063/1.5127860. eCollection 2020 Mar.
4
Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation.
Tissue Eng Part C Methods. 2020 Feb;26(2):118-131. doi: 10.1089/ten.tec.2019.0217. Epub 2020 Jan 22.

本文引用的文献

1
The vacuolated morphology of chordoma cells is dependent on cytokeratin intermediate filaments.
J Cell Physiol. 2019 Apr;234(4):3458-3468. doi: 10.1002/jcp.26809. Epub 2018 Oct 14.
2
A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures.
Tissue Eng Part A. 2018 Dec;24(23-24):1715-1732. doi: 10.1089/ten.TEA.2018.0020. Epub 2018 Jul 13.
3
The Evolution of Polystyrene as a Cell Culture Material.
Tissue Eng Part B Rev. 2018 Oct;24(5):359-372. doi: 10.1089/ten.TEB.2018.0056.
4
5
3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
Biomacromolecules. 2017 Nov 13;18(11):3802-3811. doi: 10.1021/acs.biomac.7b01165. Epub 2017 Oct 16.
7
Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins.
Adv Mater. 2017 Feb;29(5). doi: 10.1002/adma.201604342. Epub 2016 Nov 24.
8
Biomimetic Surface Patterning Promotes Mesenchymal Stem Cell Differentiation.
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):21883-92. doi: 10.1021/acsami.5b08978. Epub 2015 Dec 17.
9
Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.
PLoS One. 2015 Dec 14;10(12):e0144941. doi: 10.1371/journal.pone.0144941. eCollection 2015.
10
Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue.
Tissue Eng Part A. 2016 Feb;22(3-4):263-71. doi: 10.1089/ten.TEA.2015.0395. Epub 2016 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验