Suppr超能文献

氨基化 3D 打印聚苯乙烯维持干细胞增殖和成骨分化。

Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation.

机构信息

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland.

Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.

出版信息

Tissue Eng Part C Methods. 2020 Feb;26(2):118-131. doi: 10.1089/ten.tec.2019.0217. Epub 2020 Jan 22.

Abstract

As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH- treated surfaces encouraged cell proliferation. Our results show that the NH-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation. With osteogenic media, particularly in 3D culture, we find the NH treatment encouraged greater and earlier expression of RUNX2 and ALP. The NH-treated PS scaffolds support hMSC proliferation without spontaneous osteogenic differentiation in static and dynamic culture. This work provides an opportunity for further investigations into shear profiling and coculture within the developed culture system toward developing a bone marrow niche model.

摘要

随着 3D 打印变得越来越普遍,并且该技术被用于构建文化平台,开发针对特定反应的表面处理方法势在必行。本研究调查了对聚苯乙烯(PS)进行氨化和氧化处理对人骨髓间充质干细胞(hMSC)增殖和成骨分化的影响。我们发现氨(NH)等离子体引入了胺,而氧等离子体则添加了羰基和羧基。通过 2D、3D 和 3D 动态培养,我们发现 NH 处理表面促进了细胞增殖。结果表明,NH 处理支架是唯一允许 hMSC 在动态培养中增殖且几乎没有成骨分化证据的处理方法。使用成骨培养基,特别是在 3D 培养中,我们发现 NH 处理促进了 RUNX2 和 ALP 的更早和更高表达。NH 处理的 PS 支架在静态和动态培养中支持 hMSC 增殖,而不会自发发生成骨分化。这项工作为进一步研究剪切分析和开发培养系统中的共培养提供了机会,以期开发骨髓龛模型。

相似文献

1
Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation.
Tissue Eng Part C Methods. 2020 Feb;26(2):118-131. doi: 10.1089/ten.tec.2019.0217. Epub 2020 Jan 22.
2
Three-dimensional Printing of Biomimetic Titanium Mimicking Trabecular Bone Induces Human Mesenchymal Stem Cell Proliferation: An In-vitro Analysis.
Spine (Phila Pa 1976). 2022 Jul 15;47(14):1027-1035. doi: 10.1097/BRS.0000000000004317. Epub 2021 Dec 21.
6
Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
Biomacromolecules. 2018 Nov 12;19(11):4307-4319. doi: 10.1021/acs.biomac.8b01194. Epub 2018 Oct 18.
7
Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold.
Sci Rep. 2018 Jul 11;8(1):10457. doi: 10.1038/s41598-018-28699-x.
8
Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells.
Biomaterials. 2018 Dec;186:64-79. doi: 10.1016/j.biomaterials.2018.09.013. Epub 2018 Sep 10.
10
Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering.
Adv Biosyst. 2019 Dec;3(12):e1900137. doi: 10.1002/adbi.201900137. Epub 2019 Nov 4.

引用本文的文献

2
Tuning Cell Behavior on 3D Scaffolds Fabricated by Atmospheric Plasma-Assisted Additive Manufacturing.
ACS Appl Mater Interfaces. 2021 Jan 27;13(3):3631-3644. doi: 10.1021/acsami.0c19687. Epub 2021 Jan 15.

本文引用的文献

1
Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1771-1780. doi: 10.1021/acsbiomaterials.6b00026. Epub 2016 Mar 14.
2
Development of surface functionalization strategies for 3D-printed polystyrene constructs.
J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2566-2578. doi: 10.1002/jbm.b.34347. Epub 2019 Mar 1.
4
Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering.
Tissue Eng Part C Methods. 2019 Jan;25(1):12-24. doi: 10.1089/ten.TEC.2018.0307. Epub 2018 Dec 28.
5
A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures.
Tissue Eng Part A. 2018 Dec;24(23-24):1715-1732. doi: 10.1089/ten.TEA.2018.0020. Epub 2018 Jul 13.
6
The Evolution of Polystyrene as a Cell Culture Material.
Tissue Eng Part B Rev. 2018 Oct;24(5):359-372. doi: 10.1089/ten.TEB.2018.0056.
7
Characterization of Initial Cell Adhesion on Charged Polymer Substrates in Serum-Containing and Serum-Free Media.
Langmuir. 2018 Apr 3;34(13):4043-4051. doi: 10.1021/acs.langmuir.8b00233. Epub 2018 Mar 20.
8
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.
10
Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation.
Acta Biomater. 2016 Mar 1;32:161-169. doi: 10.1016/j.actbio.2016.01.007. Epub 2016 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验