Suppr超能文献

大容量工程化骨组织的动态生物反应器培养

Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue.

作者信息

Nguyen Bao-Ngoc B, Ko Henry, Moriarty Rebecca A, Etheridge Julie M, Fisher John P

机构信息

Fischell Department of Bioengineering, University of Maryland , College Park, Maryland.

出版信息

Tissue Eng Part A. 2016 Feb;22(3-4):263-71. doi: 10.1089/ten.TEA.2015.0395. Epub 2016 Jan 11.

Abstract

Within the field of tissue engineering and regenerative medicine, the fabrication of tissue grafts of any significant size--much less a whole organ or tissue--remains a major challenge. Currently, tissue-engineered constructs cultured in vitro have been restrained in size primarily due to the diffusion limit of oxygen and nutrients to the center of these grafts. Previously, we developed a novel tubular perfusion system (TPS) bioreactor, which allows the dynamic culture of bead-encapsulated cells and increases the supply of nutrients to the entire cell population. More interestingly, the versatility of TPS bioreactor allows a large range of engineered tissue volumes to be cultured, including large bone grafts. In this study, we utilized alginate-encapsulated human mesenchymal stem cells for the culture of a tissue-engineered bone construct in the size and shape of the superior half of an adult human femur (∼ 200 cm(3)), a 20-fold increase over previously reported volumes of in vitro engineered bone grafts. Dynamic culture in TPS bioreactor not only resulted in high cell viability throughout the femur graft, but also showed early signs of stem cell differentiation through increased expression of osteogenic genes and proteins, consistent with our previous models of smaller bone constructs. This first foray into full-scale bone engineering provides the foundation for future clinical applications of bioengineered bone grafts.

摘要

在组织工程和再生医学领域,制造任何具有相当规模的组织移植物,更不用说整个器官或组织,仍然是一项重大挑战。目前,体外培养的组织工程构建体在尺寸上受到限制,主要是由于氧气和营养物质向这些移植物中心扩散的限制。此前,我们开发了一种新型管状灌注系统(TPS)生物反应器,它可以对珠包被细胞进行动态培养,并增加对整个细胞群体的营养物质供应。更有趣的是,TPS生物反应器的多功能性使得能够培养大范围的工程化组织体积,包括大型骨移植物。在本研究中,我们利用藻酸盐包被的人间充质干细胞培养出了成人股骨上半部分大小和形状的组织工程骨构建体(约200立方厘米),这比之前报道的体外工程化骨移植物体积增加了20倍。在TPS生物反应器中进行动态培养不仅使整个股骨移植物中的细胞具有高活力,还通过成骨基因和蛋白质表达增加显示出干细胞分化的早期迹象,这与我们之前较小骨构建体的模型一致。这首次全面涉足骨工程为生物工程骨移植物的未来临床应用奠定了基础。

相似文献

1
Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue.
Tissue Eng Part A. 2016 Feb;22(3-4):263-71. doi: 10.1089/ten.TEA.2015.0395. Epub 2016 Jan 11.
2
Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.
Biotechnol Bioeng. 2016 Aug;113(8):1805-13. doi: 10.1002/bit.25929. Epub 2016 Feb 3.
3
A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering.
Biomaterials. 2009 May;30(14):2694-704. doi: 10.1016/j.biomaterials.2009.01.028. Epub 2009 Feb 15.
4
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.
Ann Biomed Eng. 2016 Dec;44(12):3435-3445. doi: 10.1007/s10439-016-1662-y. Epub 2016 Jun 6.
5
Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture.
Tissue Eng Part A. 2015 May;21(9-10):1621-32. doi: 10.1089/ten.TEA.2014.0115.
7
Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering.
J Biomed Mater Res A. 2017 Apr;105(4):1123-1131. doi: 10.1002/jbm.a.36008. Epub 2017 Feb 2.
8
Bioreactor cultivation of functional bone grafts.
Methods Mol Biol. 2011;698:231-41. doi: 10.1007/978-1-60761-999-4_18.
9
A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.
Biomaterials. 2010 Nov;31(33):8684-95. doi: 10.1016/j.biomaterials.2010.07.097. Epub 2010 Aug 24.
10
Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.
J Tissue Eng Regen Med. 2018 Apr;12(4):e2039-e2050. doi: 10.1002/term.2635. Epub 2018 Jan 25.

引用本文的文献

1
Pre-vascularized porous gelatin-coated β-tricalcium phosphate scaffolds for bone regeneration: an in vivo and in vitro investigation.
In Vitro Cell Dev Biol Anim. 2025 Jan;61(1):67-80. doi: 10.1007/s11626-024-00973-5. Epub 2024 Oct 9.
2
Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering.
BME Front. 2023 Jan 31;4:0004. doi: 10.34133/bmef.0004. eCollection 2023.
3
Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering.
J Funct Biomater. 2023 Apr 30;14(5):251. doi: 10.3390/jfb14050251.
4
Will microfluidics enable functionally integrated biohybrid robots?
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2200741119. doi: 10.1073/pnas.2200741119. Epub 2022 Aug 24.
5
Personalized Volumetric Tissue Generation by Enhancing Multiscale Mass Transport through 3D Printed Scaffolds in Perfused Bioreactors.
Adv Healthc Mater. 2022 Dec;11(24):e2200454. doi: 10.1002/adhm.202200454. Epub 2022 Jul 8.
8
3D printing in cell culture systems and medical applications.
Appl Phys Rev. 2018 Dec;5(4):041109. doi: 10.1063/1.5046087.
9
Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation.
Tissue Eng Part C Methods. 2020 Feb;26(2):118-131. doi: 10.1089/ten.tec.2019.0217. Epub 2020 Jan 22.

本文引用的文献

2
Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications.
J Immunol Res. 2015;2015:394917. doi: 10.1155/2015/394917. Epub 2015 Apr 19.
3
Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
Adv Mater. 2015 Jan 7;27(1):138-44. doi: 10.1002/adma.201403943. Epub 2014 Nov 11.
5
Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography.
Biofabrication. 2014 Sep 12;6(4):045002. doi: 10.1088/1758-5082/6/4/045002.
6
Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.
Int Orthop. 2014 Nov;38(11):2399-406. doi: 10.1007/s00264-014-2389-8. Epub 2014 Jun 12.
7
Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes.
Biotechnol Bioeng. 2014 Dec;111(12):2560-70. doi: 10.1002/bit.25303. Epub 2014 Jul 14.
9
In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.
Tissue Eng Part A. 2014 Jan;20(1-2):139-46. doi: 10.1089/ten.TEA.2013.0168. Epub 2013 Aug 31.
10
The role of perfusion bioreactors in bone tissue engineering.
Biomatter. 2012 Oct-Dec;2(4):167-75. doi: 10.4161/biom.22170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验