Suppr超能文献

在微生物燃料电池中,产甲烷菌的抑制降低了磺胺嘧啶的去除率,并增加了抗生素抗性基因的发展。

Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells.

机构信息

School of Civil Engineering, Southeast University, Nanjing 210096, China; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.

School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.

出版信息

Bioresour Technol. 2019 Jun;281:188-194. doi: 10.1016/j.biortech.2019.02.089. Epub 2019 Feb 20.

Abstract

The aim of this work was to study sulfadiazine (SDZ) biodegradation efficiency, antibiotic resistance genes (ARGs) development and shift of microbial communities under conditions of limited methanogens activity in Microbial fuel cells (MFCs). The results indicated that the removal performance of SDZ was decreased with the suppression of methanogens in both MFCs and open-circuit controls. The relative abundances of ARGs were even enhanced by the inhibition of methanogens. The biodegradation mechanism of SDZ was obtained, in which SDZ was initially divided into aniline and pyrimidin-2ylsulfamic acid, then converted into small molecules. Geobacter was found as the dominant microorganism, indicating its potential to degrade SDZ in the MFCs. These findings suggest there is a trade-off between electricity production and SDZ removal and ARG development by the mean of methanogen inhibition in MFCs.

摘要

本研究旨在探讨在限制产甲烷菌活性条件下微生物燃料电池(MFC)中磺胺嘧啶(SDZ)的降解效率、抗生素抗性基因(ARGs)的产生和微生物群落的变化。结果表明,在 MFC 和开路对照中,产甲烷菌受到抑制后,SDZ 的去除性能下降。产甲烷菌的抑制甚至会增强 ARGs 的相对丰度。获得了 SDZ 的生物降解机制,其中 SDZ 首先被分为苯胺和嘧啶-2-基氨基磺酸,然后转化为小分子。发现 Geobacter 是优势微生物,表明其在 MFC 中具有降解 SDZ 的潜力。这些发现表明,在 MFC 中通过抑制产甲烷菌,可以在产电和去除 SDZ 及 ARG 发展之间取得权衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验