Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 May 15;215:24-33. doi: 10.1016/j.saa.2019.02.051. Epub 2019 Feb 19.
The process of catalytic destruction of tumor cells can be strengthened by introducing copper(II) oxide nanostructures (CuONSs) with receptor's agonists/antagonists immobilized on their surface. Here we show a simple and reliable electrochemical method for the fabrication ions-free flake-like CuO nanostructures in a surfactant/ions free aqueous environment. For the determination of the metal surface plasmon, size, rheology, and structure of the fabricated nanostructures ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), Raman, and X-ray photoelectron (XPS) spectroscopies as well as scanning electron microscope (SEM), high-resolution transmission electron microscopy with energy dispersive X-ray (HDTEM-EDS), X-ray powder diffraction (XRD), and dynamic light scattering (DLS) analysis were used. The fabricated nanostructures were used as highly sensitive, uniform, and reproducible sensors of a natural ligand (bombesin) of some types of metabotropic seven transmembrane G protein-coupled superfamily receptors (GPCRs), which are over-express on the surface of many malignant tumors. Surface-enhanced Raman scattering (SERS) was used to monitor the geometry of adsorbate, separate, enrich, and detect various bombesin C-terminal fragments. It has been shown that the type of used substrate, surface development, and ions present in the solution have little effect on the mode of adsorption.
通过在表面固定受体的激动剂/拮抗剂,可以增强肿瘤细胞催化破坏的过程。在这里,我们展示了一种简单可靠的电化学方法,用于在无表面活性剂/离子的水相环境中制备无离子片状氧化铜纳米结构。为了确定金属表面等离子体、尺寸、流变学和结构,使用了紫外-可见(UV-Vis)、傅里叶变换红外(FT-IR)、拉曼和X 射线光电子能谱(XPS)以及扫描电子显微镜(SEM)、高分辨率透射电子显微镜与能量色散 X 射线(HDTEM-EDS)、X 射线粉末衍射(XRD)和动态光散射(DLS)分析。所制备的纳米结构被用作某些类型的代谢型七跨膜 G 蛋白偶联受体(GPCR)的天然配体(蛙皮素)的高度灵敏、均匀和可重复的传感器,这些受体在许多恶性肿瘤的表面过度表达。表面增强拉曼散射(SERS)被用于监测吸附物的几何形状,分离、富集和检测各种蛙皮素 C 末端片段。结果表明,所用基底的类型、表面开发和溶液中的离子对吸附模式的影响很小。