Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
Phys Chem Chem Phys. 2020 Dec 23;22(48):28100-28114. doi: 10.1039/d0cp03517c.
This work for the first time evaluates the ability of homogeneous, stable, and pure zinc oxide nanoparticles (ZnONPs-GS) synthesized by "green chemistry" - an environmentally friendly, cheap, and easy method that allows efficient use of plant waste, such as banana peels, for the selective detection of four neurotransmitters present in body fluids and promotion of the SERS effect. Selective adsorption on ZnONPs-GS was compared with adsorption on the surface of (1) ZnONPs, which were obtained by electrochemical dissolution of zinc in a solution free of surfactants and (2) mechanically polished surface of bare Zn. The study showed that SERS spectroscopy using unique marker bands allows distinguishing whether the adsorbate is deposited on the surface of zinc or zinc oxide. Thus, the combination of the SERS technique with an optical probe can allow an in vivo determination of the condition of galvanized implants. The use of SERS has been extended to monitor the photocatalytic properties of surface-functionalized ZnO nanoparticles. It has been shown that despite the same structure, purity, and adsorption properties, ZnONPs-GS obtained using "green chemistry" are more bio-friendly for biological material than those obtained by the electrochemical method. This is because the surface of ZnONPs-GS is free of hydroxyl groups, which can easily form reactive oxygen species when the surface is exposed to visible radiation. Thus, surface-functionalized ZnONPS-GS can protect the biological material from the damage caused by the production and attack of an excess of ROS. Also, for an exemplary neurotransmitter, structural changes when it is not-covalently bound to Zn/ZnO were compared with the structural changes of this neurotransmitter deposited on the surface of various metals (Cu, α-Ti, and α-Fe) and metal oxides (leaf-like CuO, rutile-TiO2, and γ-Fe2O3). It has been shown that adsorption only slightly depends on the type of metallic surface and the development of this surface for roughness up to 1 micron. Metal substrates were characterized before and after the neurotransmitters' adsorption. UV-Vis, Raman, and ATR-FTIR confirmed the formation of ZnO nanoparticles. XRD showed a high crystalline structure of wurtzite. TEM and DLS showed that nanoparticles are spherical, well dispersed, and have a uniform size.
这项工作首次评估了由“绿色化学”合成的均匀、稳定且纯的氧化锌纳米粒子 (ZnONPs-GS) 的能力——这是一种环保、廉价且易于使用的方法,可有效利用植物废物(如香蕉皮),用于选择性检测体液中存在的四种神经递质,并促进表面增强拉曼散射 (SERS) 效应。比较了在 ZnONPs-GS 上的选择性吸附与在 (1) 在不含表面活性剂的溶液中通过电化学溶解锌获得的 ZnO 纳米粒子和 (2) 裸 Zn 的机械抛光表面上的吸附。研究表明,使用独特的标记带的 SERS 光谱可以区分吸附物是沉积在锌表面还是氧化锌表面上。因此,将 SERS 技术与光学探针相结合,可以允许体内确定镀锌植入物的状态。已经将 SERS 的使用扩展到监测表面功能化 ZnO 纳米粒子的光催化性能。已经表明,尽管结构、纯度和吸附性能相同,但使用“绿色化学”获得的 ZnONPs-GS 比通过电化学方法获得的 ZnONPs-GS 对生物材料更友好。这是因为 ZnONPs-GS 的表面不含羟基,当表面暴露于可见光辐射时,羟基很容易形成活性氧物质。因此,表面功能化的 ZnONPS-GS 可以保护生物材料免受由于 ROS 的产生和攻击而造成的损伤。此外,对于示例性的神经递质,比较了其与非共价结合到 Zn/ZnO 时的结构变化与沉积在各种金属(Cu、α-Ti 和 α-Fe)和金属氧化物(叶状 CuO、金红石-TiO2 和 γ-Fe2O3)表面上的这种神经递质的结构变化。结果表明,吸附仅略微取决于金属表面的类型和粗糙度达到 1 微米的表面的发展。在吸附神经递质前后对金属基底进行了表征。UV-Vis、拉曼和 ATR-FTIR 证实了 ZnO 纳米粒子的形成。XRD 显示出纤锌矿的高结晶结构。TEM 和 DLS 表明纳米粒子为球形,分散良好,且具有均匀的尺寸。