Suppr超能文献

用于聚类分析的土壤X射线粉末衍射数据的预处理。

Pre-treatment of soil X-ray powder diffraction data for cluster analysis.

作者信息

Butler Benjamin M, Sila Andrew M, Shepherd Keith D, Nyambura Mercy, Gilmore Chris J, Kourkoumelis Nikolaos, Hillier Stephen

机构信息

The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.

World Agroforestry Centre (ICRAF), P.O. Box 30677-00100 GPO, Nairobi, Kenya.

出版信息

Geoderma. 2019 Mar 1;337:413-424. doi: 10.1016/j.geoderma.2018.09.044.

Abstract

X-ray powder diffraction (XRPD) is widely applied for the qualitative and quantitative analysis of soil mineralogy. In recent years, high-throughput XRPD has resulted in soil XRPD datasets containing thousands of samples. The efforts required for conventional approaches of soil XRPD data analysis are currently restrictive for such large data sets, resulting in a need for computational methods that can aid in defining soil property - soil mineralogy relationships. Cluster analysis of soil XRPD data represents a rapid method for grouping data into discrete classes based on mineralogical similarities, and thus allows for sets of mineralogically distinct soils to be defined and investigated in greater detail. Effective cluster analysis requires minimisation of sample-independent variation and maximisation of sample-dependent variation, which entails pre-treatment of XRPD data in order to correct for common aberrations associated with data collection. A 2 factorial design was used to investigate the most effective data pre-treatment protocol for the cluster analysis of XRPD data from 12 African soils, each analysed once by five different personnel. Sample-independent effects of displacement error, noise and signal intensity variation were pre-treated using peak alignment, binning and scaling, respectively. The sample-dependent effect of strongly diffracting minerals overwhelming the signal of weakly diffracting minerals was pre-treated using a square-root transformation. Without pre-treatment, the 60 XRPD measurements failed to provide informative clusters. Pre-treatment via peak alignment, square-root transformation, and scaling each resulted in significantly improved partitioning of the groups ( < 0.05). Data pre-treatment via binning reduced the computational demands of cluster analysis, but did not significantly affect the partitioning ( > 0.1). Applying all four pre-treatments proved to be the most suitable protocol for both non-hierarchical and hierarchical cluster analysis. Deducing such a protocol is considered a prerequisite to the wider application of cluster analysis in exploring soil property - soil mineralogy relationships in larger datasets.

摘要

X射线粉末衍射(XRPD)被广泛应用于土壤矿物学的定性和定量分析。近年来,高通量XRPD已产生包含数千个样本的土壤XRPD数据集。传统的土壤XRPD数据分析方法所需的工作量目前对于如此大的数据集具有限制作用,因此需要能够有助于确定土壤性质与土壤矿物学关系的计算方法。土壤XRPD数据的聚类分析是一种基于矿物学相似性将数据分组为离散类别的快速方法,从而能够更详细地定义和研究矿物学上不同的土壤集合。有效的聚类分析需要最小化与样本无关的变异并最大化与样本相关的变异,这需要对XRPD数据进行预处理,以校正与数据收集相关的常见偏差。采用二因素设计来研究对12种非洲土壤的XRPD数据进行聚类分析的最有效数据预处理方案,每种土壤由五名不同人员各分析一次。分别使用峰对齐、装箱和缩放对位移误差、噪声和信号强度变化的与样本无关的效应进行预处理。使用平方根变换对强衍射矿物掩盖弱衍射矿物信号的与样本相关的效应进行预处理。未经预处理,60次XRPD测量未能提供信息丰富的聚类。通过峰对齐、平方根变换和缩放进行预处理均显著改善了组的划分(P<0.05)。通过装箱进行数据预处理降低了聚类分析的计算需求,但对划分没有显著影响(P>0.1)。事实证明,应用所有四种预处理对于非层次聚类分析和层次聚类分析都是最合适的方案。推导这样一种方案被认为是在更大数据集中更广泛地应用聚类分析来探索土壤性质与土壤矿物学关系的先决条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/883c/6358122/885267d27c56/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验