Chang Tay-Rong, Pletikosic Ivo, Kong Tai, Bian Guang, Huang Angus, Denlinger Jonathan, Kushwaha Satya K, Sinkovic Boris, Jeng Horny-Tay, Valla Tonica, Xie Weiwei, Cava Robert J
Department of Physics National Cheng Kung University Tainan 701 Taiwan.
Department of Physics Princeton University Princeton NJ 08544 USA.
Adv Sci (Weinh). 2018 Nov 28;6(4):1800897. doi: 10.1002/advs.201800897. eCollection 2019 Feb 20.
Nodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive. First-principles calculations show that MgBi is a material candidate for the type-II NLS. The band crossing is close to the Fermi level and exhibits the type-II nature of the nodal line in this material. Spin-orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of MgBi that yields the type-II nodal line. Based on this prediction, MgBi single crystals are synthesized and the presence of the type-II nodal lines in the material is confirmed. The angle-resolved photoemission spectroscopy measurements agree well with the first-principles results below the Fermi level and thus strongly suggest MgBi as an ideal material platform for studying the as-yet unstudied properties of type-II nodal-line semimetals.
节线半金属(NLSs)代表了一种超越外尔半金属和狄拉克半金属的新型拓扑半金属相,因为它们在布里渊区具有能带简并的闭环或开放曲线。与I型和II型外尔半金属的分类类似,NLSs也有两种类型。I型NLS相已在许多化合物中被提出并实现,而强烈违反洛伦兹对称性的奇异II型NLS相仍然难以捉摸。第一性原理计算表明,MgBi是II型NLS的一种候选材料。能带交叉接近费米能级,并在这种材料中表现出节线的II型性质。自旋轨道耦合仅在节点处产生一个小的能隙(约35 meV),并且不会消除产生II型节线的MgBi的能带色散。基于这一预测,合成了MgBi单晶,并证实了该材料中存在II型节线。角分辨光电子能谱测量结果与费米能级以下的第一性原理结果非常吻合,因此有力地表明MgBi是研究尚未被研究的II型节线半金属性质的理想材料平台。