Suppr超能文献

一种具有自增强药物释放功能的pH/ROS级联响应电荷反转纳米系统用于协同氧化化疗

A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy.

作者信息

Dai Liangliang, Li Xiang, Duan Xianglong, Li Menghuan, Niu Peiyun, Xu Huiyun, Cai Kaiyong, Yang Hui

机构信息

Institute of Medical Research Northwestern Polytechnical University Xi'an 710072 P. R. China.

School of Life Sciences Northwestern Polytechnical University Xi'an 710072 P. R. China.

出版信息

Adv Sci (Weinh). 2018 Dec 18;6(4):1801807. doi: 10.1002/advs.201801807. eCollection 2019 Feb 20.

Abstract

Poor cell uptake of drugs is one of the major challenges for anticancer therapy. Moreover, the inability to release adequate drug at tumor sites and inherent multidrug resistance (MDR) may further limit the therapeutic effect. Herein, a delivery nanosystem with a charge-reversal capability and self-amplifiable drug release pattern is constructed by encapsulating β-lapachone in pH/ROS cascade-responsive polymeric prodrug micelle. The surface charge of this micellar system would be converted from negative to positive for enhanced tumor cell uptake in response to the weakly acidic tumor microenvironment. Subsequently, the cascade-responsive micellar system could be dissociated in a reactive oxygen species (ROS)-rich intracellular environment, resulting in cytoplasmic release of β-lapachone and camptothecin (CPT). Furthermore, the released β-lapachone is capable of producing ROS under the catalysis of nicotinamide adenine dinucleotide (NAD)(P)H:quinone oxidoreductase-1 (NQO1), which induces the self-amplifiable disassembly of the micelles and drug release to consume adenosine triphosphate (ATP) and downregulate P-glycoprotein (P-gp), eventually overcoming MDR. Moreover, the excessive ROS produced from β-lapachone could synergize with CPT and further propagate tumor cell apoptosis. The studies in vitro and in vivo consistently demonstrate that the combination of the pH-responsive charge-reversal, upregulation of tumoral ROS level, and self-amplifying ROS-responsive drug release achieves potent antitumor efficacy via the synergistic oxidation-chemotherapy.

摘要

药物的细胞摄取不佳是抗癌治疗的主要挑战之一。此外,无法在肿瘤部位释放足够的药物以及固有的多药耐药性(MDR)可能会进一步限制治疗效果。在此,通过将β-拉帕醌封装在pH/ROS级联响应聚合物前药胶束中,构建了一种具有电荷反转能力和自增强药物释放模式的递送纳米系统。响应于弱酸性肿瘤微环境,该胶束系统的表面电荷将从负变为正,以增强肿瘤细胞摄取。随后,级联响应胶束系统可在富含活性氧(ROS)的细胞内环境中解离,导致β-拉帕醌和喜树碱(CPT)在细胞质中释放。此外,释放的β-拉帕醌能够在烟酰胺腺嘌呤二核苷酸(NAD)(P)H:醌氧化还原酶-1(NQO1)的催化下产生活性氧,这诱导胶束的自增强解离和药物释放,以消耗三磷酸腺苷(ATP)并下调P-糖蛋白(P-gp),最终克服多药耐药性。此外,β-拉帕醌产生的过量活性氧可与CPT协同作用,进一步促进肿瘤细胞凋亡。体外和体内研究一致表明,pH响应性电荷反转、肿瘤ROS水平上调和自增强ROS响应性药物释放的组合通过协同氧化化疗实现了强大的抗肿瘤疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c03/6382314/3482ee75b929/ADVS-6-1801807-g007.jpg

相似文献

1
A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy.
Adv Sci (Weinh). 2018 Dec 18;6(4):1801807. doi: 10.1002/advs.201801807. eCollection 2019 Feb 20.
3
Self-immolative polyprodrug-based tumor-specific cascade amplificated drug release nanosystem for orchestrated synergistic cancer therapy.
Biomaterials. 2022 Oct;289:121803. doi: 10.1016/j.biomaterials.2022.121803. Epub 2022 Sep 16.
5
A pH-Responsive Charge-Reversal Drug Delivery System with Tumor-Specific Drug Release and ROS Generation for Cancer Therapy.
Int J Nanomedicine. 2020 Jan 8;15:65-80. doi: 10.2147/IJN.S230237. eCollection 2020.
6
Dual-responsive doxorubicin-loaded nanomicelles for enhanced cancer therapy.
J Nanobiotechnology. 2020 Sep 24;18(1):136. doi: 10.1186/s12951-020-00691-6.
8
10
Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release.
Biomaterials. 2019 Mar;195:63-74. doi: 10.1016/j.biomaterials.2018.12.032. Epub 2018 Dec 29.

引用本文的文献

2
IR783-Stabilized Nanodrugs Enhance Anticancer Immune Response by Synergizing Oxidation Therapy and Epigenetic Modulation.
Adv Sci (Weinh). 2025 Jun;12(21):e2415684. doi: 10.1002/advs.202415684. Epub 2025 Mar 27.
3
Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy.
Int J Nanomedicine. 2025 Feb 25;20:2371-2394. doi: 10.2147/IJN.S505539. eCollection 2025.
4
Nanoenabled intracellular zinc bursting for efficacious reversal of gefitinib resistance in lung cancer.
Int J Biol Sci. 2024 May 19;20(8):3028-3045. doi: 10.7150/ijbs.95929. eCollection 2024.
5
Application and design considerations of ROS-based nanomaterials in diabetic kidney disease.
Front Endocrinol (Lausanne). 2024 Apr 29;15:1351497. doi: 10.3389/fendo.2024.1351497. eCollection 2024.
7
Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity.
Adv Sci (Weinh). 2024 Jan;11(3):e2306580. doi: 10.1002/advs.202306580. Epub 2023 Nov 20.
9
Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine.
Pharmaceuticals (Basel). 2023 Mar 12;16(3):433. doi: 10.3390/ph16030433.
10
Reactive oxygen species-responsive polymer drug delivery systems.
Front Bioeng Biotechnol. 2023 Feb 2;11:1115603. doi: 10.3389/fbioe.2023.1115603. eCollection 2023.

本文引用的文献

2
Genome-Scale Modeling of NADPH-Driven β-Lapachone Sensitization in Head and Neck Squamous Cell Carcinoma.
Antioxid Redox Signal. 2018 Oct 1;29(10):937-952. doi: 10.1089/ars.2017.7048. Epub 2017 Sep 14.
3
Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo.
Biomaterials. 2016 Oct;104:1-17. doi: 10.1016/j.biomaterials.2016.07.002. Epub 2016 Jul 5.
4
Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy.
J Control Release. 2016 Mar 10;225:64-74. doi: 10.1016/j.jconrel.2016.01.029. Epub 2016 Jan 19.
5
Size Changeable Nanocarriers with Nuclear Targeting for Effectively Overcoming Multidrug Resistance in Cancer Therapy.
Adv Mater. 2015 Nov 4;27(41):6450-6. doi: 10.1002/adma.201502865. Epub 2015 Sep 24.
6
Principles of nanoparticle design for overcoming biological barriers to drug delivery.
Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330.
7
Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response.
Biomaterials. 2015 Jun;52:126-39. doi: 10.1016/j.biomaterials.2015.02.004. Epub 2015 Feb 24.
8
Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery.
Small. 2015 Jun 3;11(21):2543-54. doi: 10.1002/smll.201402865. Epub 2015 Jan 27.
9
Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy.
J Control Release. 2015 Feb 28;200:201-11. doi: 10.1016/j.jconrel.2014.12.027. Epub 2014 Dec 24.
10
Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles.
Angew Chem Int Ed Engl. 2015 Jan 12;54(3):1002-6. doi: 10.1002/anie.201409293. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验