Suppr超能文献

基于新转录模式的慢性淋巴细胞白血病治疗时间预测

Time to Treatment Prediction in Chronic Lymphocytic Leukemia Based on New Transcriptional Patterns.

作者信息

Mosquera Orgueira Adrián, Antelo Rodríguez Beatriz, Alonso Vence Natalia, Bendaña López Ángeles, Díaz Arias José Ángel, Díaz Varela Nicolás, González Pérez Marta Sonia, Pérez Encinas Manuel Mateo, Bello López José Luis

机构信息

Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.

Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain.

出版信息

Front Oncol. 2019 Feb 15;9:79. doi: 10.3389/fonc.2019.00079. eCollection 2019.

Abstract

Chronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in western countries. CLL evolution is frequently indolent, and treatment is mostly reserved for those patients with signs or symptoms of disease progression. In this work, we used RNA sequencing data from the International Cancer Genome Consortium CLL cohort to determine new gene expression patterns that correlate with clinical evolution.We determined that a 290-gene expression signature, in addition to immunoglobulin heavy chain variable region () mutation status, stratifies patients into four groups with notably different time to first treatment. This finding was confirmed in an independent cohort. Similarly, we present a machine learning algorithm that predicts the need for treatment within the first 5 years following diagnosis using expression data from 2,198 genes. This predictor achieved 90% precision and 89% accuracy when classifying independent CLL cases. Our findings indicate that CLL progression risk largely correlates with particular transcriptomic patterns and paves the way for the identification of high-risk patients who might benefit from prompt therapy following diagnosis.

摘要

慢性淋巴细胞白血病(CLL)是西方国家最常见的淋巴增殖性综合征。CLL的病程通常进展缓慢,治疗主要针对那些有疾病进展体征或症状的患者。在这项研究中,我们使用了来自国际癌症基因组联盟CLL队列的RNA测序数据,以确定与临床病程相关的新基因表达模式。我们确定,除了免疫球蛋白重链可变区()突变状态外,一个由290个基因组成的表达特征可将患者分为四组,其首次治疗时间明显不同。这一发现在一个独立队列中得到了证实。同样,我们提出了一种机器学习算法,该算法使用来自2198个基因的表达数据预测诊断后前5年内的治疗需求。在对独立的CLL病例进行分类时,该预测器的准确率达到90%,精确率达到89%。我们的研究结果表明,CLL的进展风险在很大程度上与特定的转录组模式相关,并为识别可能从诊断后立即治疗中获益的高危患者铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d35d/6384245/a0eb194295c2/fonc-09-00079-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验