Suppr超能文献

调控超薄TiO纳米片中的氧空位以促进高达700 nm的光催化固氮作用。

Tuning Oxygen Vacancies in Ultrathin TiO Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm.

作者信息

Zhao Yunxuan, Zhao Yufei, Shi Run, Wang Bin, Waterhouse Geoffrey I N, Wu Li-Zhu, Tung Chen-Ho, Zhang Tierui

机构信息

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.

出版信息

Adv Mater. 2019 Apr;31(16):e1806482. doi: 10.1002/adma.201806482. Epub 2019 Mar 4.

Abstract

Dinitrogen reduction to ammonia using transition metal catalysts is central to both the chemical industry and the Earth's nitrogen cycle. In the Haber-Bosch process, a metallic iron catalyst and high temperatures (400 °C) and pressures (200 atm) are necessary to activate and cleave NN bonds, motivating the search for alternative catalysts that can transform N to NH under far milder reaction conditions. Here, the successful hydrothermal synthesis of ultrathin TiO nanosheets with an abundance of oxygen vacancies and intrinsic compressive strain, achieved through a facile copper-doping strategy, is reported. These defect-rich ultrathin anatase nanosheets exhibit remarkable and stable performance for photocatalytic reduction of N to NH in water, exhibiting photoactivity up to 700 nm. The oxygen vacancies and strain effect allow strong chemisorption and activation of molecular N and water, resulting in unusually high rates of NH evolution under visible-light irradiation. Therefore, this study offers a promising and sustainable route for the fixation of atmospheric N using solar energy.

摘要

使用过渡金属催化剂将氮气还原为氨对于化学工业和地球氮循环都至关重要。在哈伯-博施过程中,需要金属铁催化剂以及高温(400°C)和高压(200个大气压)来激活和裂解N≡N键,这促使人们寻找能够在温和得多的反应条件下将N转化为NH₃的替代催化剂。在此,报道了通过简便的铜掺杂策略成功水热合成了具有大量氧空位和固有压缩应变的超薄TiO₂纳米片。这些富含缺陷的超薄锐钛矿纳米片在水中光催化将N₂还原为NH₃表现出卓越且稳定的性能,光活性可达700nm。氧空位和应变效应使得分子N₂和水能够发生强烈的化学吸附和活化,从而在可见光照射下产生异常高的NH₃生成速率。因此,本研究为利用太阳能固定大气中的N₂提供了一条有前景的可持续途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验