Suppr超能文献

通过在超薄二氧化钛纳米片上组装等离子体金纳米晶体实现高效“串联”固氮

High-Efficiency "Working-in-Tandem" Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets.

作者信息

Yang Jianhua, Guo Yanzhen, Jiang Ruibin, Qin Feng, Zhang Han, Lu Wenzheng, Wang Jianfang, Yu Jimmy C

机构信息

Department of Physics , The Chinese University of Hong Kong , Shatin 852 , Hong Kong SAR , China.

Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China.

出版信息

J Am Chem Soc. 2018 Jul 11;140(27):8497-8508. doi: 10.1021/jacs.8b03537. Epub 2018 Jun 27.

Abstract

The fixation of atmospheric N to NH is an essential process for sustaining life. One grand challenge is to develop efficient catalysts to photofix N under ambient conditions. Herein we report an all-inorganic catalyst, Au nanocrystals anchored on ultrathin TiO nanosheets with oxygen vacancies. It can accomplish photodriven N fixation in the "working-in-tandem" pathway at room temperature and atmospheric pressure. The oxygen vacancies on the TiO nanosheets chemisorb and activate N molecules, which are subsequently reduced to NH by hot electrons generated from plasmon excitation of the Au nanocrystals. The apparent quantum efficiency of 0.82% at 550 nm for the conversion of incident photons to NH is higher than those reported so far. Optimizing the absorption across the overall visible range with the mixture of Au nanospheres and nanorods further enhances the N photofixation rate by 66.2% in comparison with Au nanospheres used alone. This work offers a new approach for the rational design of efficient catalysts toward sustainable N fixation through a less energy-demanding photochemical process compared to the industrial Haber-Bosch process.

摘要

将大气中的氮固定为氨是维持生命的一个重要过程。一个重大挑战是开发在环境条件下光固定氮的高效催化剂。在此,我们报道了一种全无机催化剂,即锚定在具有氧空位的超薄TiO纳米片上的金纳米晶体。它能够在室温及大气压下通过“串联工作”途径实现光驱动的氮固定。TiO纳米片上的氧空位化学吸附并活化氮分子,随后这些氮分子被金纳米晶体等离子体激元激发产生的热电子还原为氨。在550nm处,将入射光子转化为氨的表观量子效率为0.82%,高于迄今报道的效率。与单独使用金纳米球相比,用金纳米球和纳米棒的混合物优化整个可见光谱范围内的吸收,可进一步将氮光固定速率提高66.2%。与工业哈伯-博施法相比,这项工作通过一种能量需求较低的光化学过程,为合理设计用于可持续氮固定的高效催化剂提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验