Suppr超能文献

Use of pulsed energy delivery to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular tissues.

作者信息

Deckelbaum L I, Isner J M, Donaldson R F, Laliberte S M, Clarke R H, Salem D N

出版信息

J Am Coll Cardiol. 1986 Apr;7(4):898-908. doi: 10.1016/s0735-1097(86)80355-2.

Abstract

The carbon dioxide (CO2) laser has been utilized for preliminary intraoperative cardiovascular applications, including coronary endarterectomy and ventricular endocardiectomy. CO2 lasers used for these applications have been operated in the continuous wave, chopped or pulsed mode at low peak powers. To evaluate the extent of boundary tissue injury, continuous, chopped and pulsed energy delivery of CO2 laser emission was used to bore through 192 5 mm thick myocardial slices in air. Continuous, chopped and pulsed delivery at a peak power of 500 W or less failed to eliminate light microscopic or ultrastructural signs of thermal injury. Only when a high energy CO2 laser (pulse energy 80 to 300 mJ, pulse duration 1 microseconds) was used at a peak power greater than 80 kW were all signs of thermal injury eliminated; furthermore, high peak power prevented thermal injury only when the beam was focused to achieve a peak power density greater than 60 kW/mm2. Under these conditions, pathologic findings were identical to those observed using excimer wavelengths. The results of these experiments indicate that: conventional CO2 lasers fail to minimize boundary tissue injury, elimination of thermal injury during intraoperative laser ablation requires that CO2 laser energy be focused to achieve a peak power density greater than 60 kW/mm2, and elimination of thermal injury can be achieved at a variety of wavelengths, provided that an appropriate energy profile is employed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验