Department of Computer Science , Stanford University , Stanford , California 94305 , United States.
Department of Electrical Engineering and Computer Science , National Chiao Tung University , Hsinchu 30010 , Taiwan , R.O.C.
ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11061-11105. doi: 10.1021/acsami.8b19859. Epub 2019 Mar 18.
Flexible, stretchable, and bendable materials, including inorganic semiconductors, organic polymers, graphene, and transition metal dichalcogenides (TMDs), are attracting great attention in such areas as wearable electronics, biomedical technologies, foldable displays, and wearable point-of-care biosensors for healthcare. Among a broad range of layered TMDs, atomically thin layered molybdenum disulfide (MoS) has been of particular interest, due to its exceptional electronic properties, including tunable bandgap and charge carrier mobility. MoS atomic layers can be used as a channel or a gate dielectric for fabricating atomically thin field-effect transistors (FETs) for electronic and optoelectronic devices. This review briefly introduces the processing and spectroscopic characterization of large-area MoS atomically thin layers. The review summarizes the different strategies in enhancing the charge carrier mobility and switching speed of MoS FETs by integrating high-κ dielectrics, encapsulating layers, and other 2D van der Waals layered materials into flexible MoS device structures. The photoluminescence (PL) of MoS atomic layers has, after chemical treatment, been dramatically improved to near-unity quantum yield. Ultraflexible and wearable active-matrix organic light-emitting diode (AM-OLED) displays and wafer-scale flexible resistive random-access memory (RRAM) arrays have been assembled using flexible MoS transistors. The review discusses the overall recent progress made in developing MoS based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices. Finally, it outlines the perspectives and tremendous opportunities offered by a large family of atomically thin-layered TMDs.
柔性、可拉伸和可弯曲的材料,包括无机半导体、有机聚合物、石墨烯和过渡金属二卤化物(TMDs),在可穿戴电子、生物医学技术、可折叠显示器以及用于医疗保健的可穿戴即时生物传感器等领域引起了极大关注。在广泛的层状 TMDs 中,原子层厚的二硫化钼(MoS)因其独特的电子特性而备受关注,包括可调带隙和电荷载流子迁移率。MoS 原子层可用作制造用于电子和光电子器件的原子层厚场效应晶体管(FET)的沟道或栅介质。本文简要介绍了大面积 MoS 原子层薄的加工和光谱特性。本文总结了通过将高介电常数电介质、封装层和其他二维范德华层状材料集成到柔性 MoS 器件结构中,来提高 MoS FET 中的电荷载流子迁移率和开关速度的不同策略。经过化学处理后,MoS 原子层的光致发光(PL)已大大提高到近量子产率。采用柔性 MoS 晶体管已组装出超柔软和可穿戴的有源矩阵有机发光二极管(AM-OLED)显示器和晶圆级柔性电阻式随机存取存储器(RRAM)阵列。本文讨论了在开发基于 MoS 的柔性 FET、OLED 显示器、非易失性存储器(NVM)器件、压电纳米发电机(PNG)以及用于可穿戴电子和光电子设备的传感器方面取得的整体最新进展。最后,它概述了由大量原子层厚的 TMDs 提供的观点和巨大机会。