Suppr超能文献

利用正样本和无标签机器学习预测二维金属碳化物和氮化物(MXenes)及其前驱体的合成

Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning.

作者信息

Frey Nathan C, Wang Jin, Vega Bellido Gabriel Iván, Anasori Babak, Gogotsi Yury, Shenoy Vivek B

机构信息

Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.

Department of Chemical Engineering , University of Puerto Rico at Mayagüez , Mayagüez 00681 , Puerto Rico.

出版信息

ACS Nano. 2019 Mar 26;13(3):3031-3041. doi: 10.1021/acsnano.8b08014. Epub 2019 Mar 7.

Abstract

Growing interest in the potential applications of two-dimensional (2D) materials has fueled advancement in the identification of 2D systems with exotic properties. Increasingly, the bottleneck in this field is the synthesis of these materials. Although theoretical calculations have predicted a myriad of promising 2D materials, only a few dozen have been experimentally realized since the initial discovery of graphene. Here, we adapt the state-of-the-art positive and unlabeled (PU) machine learning framework to predict which theoretically proposed 2D materials have the highest likelihood of being successfully synthesized. Using elemental information and data from high-throughput density functional theory calculations, we apply the PU learning method to the MXene family of 2D transition metal carbides, carbonitrides, and nitrides, and their layered precursor MAX phases, and identify 18 MXene compounds that are highly promising candidates for synthesis. By considering both the MXenes and their precursors, we further propose 20 synthesizable MAX phases that can be chemically exfoliated to produce MXenes.

摘要

对二维(2D)材料潜在应用的兴趣日益浓厚,推动了对具有奇异特性的二维体系的识别研究取得进展。在该领域,越来越多的瓶颈在于这些材料的合成。尽管理论计算已经预测了无数有前景的二维材料,但自石墨烯首次被发现以来,只有几十种在实验中得以实现。在此,我们采用最先进的正无标记(PU)机器学习框架,来预测哪些理论上提出的二维材料最有可能成功合成。利用元素信息和高通量密度泛函理论计算的数据,我们将PU学习方法应用于二维过渡金属碳化物、碳氮化物和氮化物的MXene族及其层状前驱体MAX相,并识别出18种极有合成前景的MXene化合物。通过同时考虑MXene及其前驱体,我们进一步提出了20种可化学剥离以制备MXene的可合成MAX相。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验