Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France.
Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, École Centrale de Lyon, Sherbrooke, Canada.
Electrophoresis. 2019 May;40(10):1417-1425. doi: 10.1002/elps.201800439. Epub 2019 Mar 20.
The performance of conventional surface plasmon resonance (SPR) biosensors can be limited by the diffusion of the target analyte to the sensor surface. This work presents an SPR biosensor that incorporates an active mass-transport mechanism based on dielectrophoresis and electroosmotic flow to enhance analyte transport to the sensor surface and reduce the time required for detection. Both these phenomena rely on the generation of AC electric fields that can be tailored by shaping the electrodes that also serve as the SPR sensing areas. Numerical simulations of electric field distribution and microparticle trajectories were performed to choose an optimal electrode design. The proposed design improves on previous work combining SPR with DEP by using face-to-face electrodes, rather than a planar interdigitated design. Two different top-bottom electrode designs were experimentally tested to concentrate firstly latex beads and secondly biological cells onto the SPR sensing area. SPR measurements were then performed by varying the target concentrations. The electrohydrodynamic flow enabled efficient concentration of small objects (3 μm beads, yeasts) onto the SPR sensing area, which resulted in an order of magnitude increased SPR response. Negative dielectrophoresis was also used to concentrate HEK293 cells onto the metal electrodes surrounded by insulating areas, where the SPR response was improved by one order of magnitude.
传统的表面等离子体共振(SPR)生物传感器的性能可能会受到目标分析物扩散到传感器表面的限制。本工作提出了一种 SPR 生物传感器,该传感器结合了基于电致流动和介电泳的主动传质机制,以增强分析物向传感器表面的传输并减少检测所需的时间。这两种现象都依赖于交流电场的产生,通过对同时作为 SPR 传感区域的电极进行塑形可以对其进行调整。进行了电场分布和微粒子轨迹的数值模拟,以选择最佳的电极设计。所提出的设计通过使用面对面电极,而不是平面交错设计,改进了先前将 SPR 与 DEP 结合的工作。实验测试了两种不同的顶-底电极设计,以首先将乳胶珠和其次将生物细胞集中到 SPR 传感区域。然后通过改变目标浓度进行 SPR 测量。电动力学流动能够有效地将小物体(3 μm 珠,酵母)集中到 SPR 传感区域,从而使 SPR 响应增加了一个数量级。负介电泳也被用于将 HEK293 细胞集中到由绝缘区域包围的金属电极上,其中 SPR 响应提高了一个数量级。