Götsch Thomas, Wernig Eva-Maria, Klötzer Bernhard, Schachinger Thomas, Kunze-Liebhäuser Julia, Penner Simon
Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria.
University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria.
Rev Sci Instrum. 2019 Feb;90(2):023902. doi: 10.1063/1.5065786.
A modular high vacuum chamber dedicated to thin film deposition is presented. We detail the vacuum and gas infrastructure required to operate two highly flexible chambers simultaneously, with a focus on evaporation techniques (thermal and electron beam) and magnetron sputtering, including baking equipment to remove residual water from the chamber. The use of O-ring-sealed flat flanges allows a tool-free assembly process, in turn enabling rapid changes of the whole setup. This leads to a high flexibility regarding the deposition techniques as the chamber can be adapted to different sources within minutes, permitting the formation of multilayer systems by consecutive depositions onto the same substrate. The central piece of the chamber is a flat flange ground glass tube or cross. The glass recipient permits optical monitoring of the deposition process. Further equipment, such as for the introduction of gases, additional pressure gauges, or evaporators, can be incorporated via specifically designed stainless steel/aluminum interconnectors and blank flanges. In the end, we demonstrate the preparation of an unsupported thin film system consisting of electron-beam-evaporated platinum nanoparticles embedded in magnetron-sputtered zirconia (ZrO), deposited onto NaCl single crystals, which subsequently can be removed by dissolution. These films are further analyzed by means of transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.
本文介绍了一种用于薄膜沉积的模块化高真空腔室。我们详细阐述了同时操作两个高度灵活腔室所需的真空和气体基础设施,重点关注蒸发技术(热蒸发和电子束蒸发)以及磁控溅射,包括用于去除腔室内残留水分的烘烤设备。使用O形环密封的平面法兰允许无工具组装过程,进而能够快速更换整个装置。这使得沉积技术具有高度灵活性,因为腔室可以在几分钟内适配不同的源,从而允许通过在同一基板上连续沉积形成多层系统。腔室的核心部件是一个平面法兰磨砂玻璃管或十字形管。玻璃容器允许对沉积过程进行光学监测。其他设备,如用于气体引入、额外压力计或蒸发器的设备,可以通过专门设计的不锈钢/铝互连器和盲板法兰并入。最后,我们展示了一种无支撑薄膜系统的制备,该系统由嵌入磁控溅射氧化锆(ZrO)中的电子束蒸发铂纳米颗粒组成,沉积在氯化钠单晶上,随后可以通过溶解去除。通过透射电子显微镜、X射线光电子能谱和原子力显微镜对这些薄膜进行了进一步分析。