Pruna Alina Iuliana, Cárcel Alfonso C, Benedito Adolfo, Giménez Enrique
Universitat Politècnica de València (UPV), Instituto de Tecnología de Materiales, Camino de Vera s/n, 46022 Valencia, Spain.
Instituto Tecnológico del Plástico (AIMPLAS), 46980 Paterna (Valencia), Spain.
Nanomaterials (Basel). 2019 Mar 3;9(3):350. doi: 10.3390/nano9030350.
Low-density three-dimensional (3D) N-doped graphene aerogels by a one-step solvothermal method in the presence of ethylenediamine (EDA) are reported. The gelation, formation, and properties of the aerogels were studied with solvothermal conditions, namely, operating temperature, time, graphene oxide (GO) concentration, and the GO/EDA w/w ratio. Two ranges of solvothermal conditions are employed: one involving an operating temperature below 100 °C and a conventional chemical reduction of GO with EDA at atmospheric pressure and a second one employing a higher temperature range up to 165 and a high pressure reduction with EDA. The results show that both solvothermal approaches allow for the fabrication of homogeneous N-doped 3D graphene aerogels with density values close to 10 mg cm. The measurements indicated that low values of GO concentration, temperature, and EDA are optimum for obtaining low-density 3D aerogels. N doping is improved with an EDA amount in lower temperature conditions. The N doping mechanism below 100 °C is dominated by the epoxy ring opening while at temperatures up to 165 °C both epoxy ring opening and amidation take place. The CO₂ adsorption properties are strongly controlled by the nitrogen configuration, namely, pyridinic nitrogen in terms of its density.
报道了在乙二胺(EDA)存在下通过一步溶剂热法制备的低密度三维(3D)氮掺杂石墨烯气凝胶。研究了气凝胶的凝胶化、形成过程及性能与溶剂热条件的关系,这些条件包括操作温度、时间、氧化石墨烯(GO)浓度以及GO/EDA的重量比。采用了两个范围的溶剂热条件:一个是操作温度低于100°C且在大气压下用EDA对GO进行常规化学还原,另一个是采用高达165°C的较高温度范围并用EDA进行高压还原。结果表明,两种溶剂热方法都能制备出密度值接近10 mg/cm³的均匀氮掺杂3D石墨烯气凝胶。测量结果表明,低的GO浓度、温度和EDA值对于获得低密度3D气凝胶是最佳的。在较低温度条件下,随着EDA量的增加氮掺杂得到改善。100°C以下的氮掺杂机制主要由环氧开环主导,而在高达165°C的温度下,环氧开环和酰胺化都发生。二氧化碳吸附性能受氮构型的强烈控制,即吡啶氮的密度。