Suppr超能文献

氮掺杂石墨烯/碳纳米管催化剂用于CO电化学还原的高效位点及选择性

Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO electrochemical reduction.

作者信息

Chai Guo-Liang, Guo Zheng-Xiao

机构信息

Department of Chemistry , University College London , London WC1H 0AJ , UK . Email:

出版信息

Chem Sci. 2016 Feb 1;7(2):1268-1275. doi: 10.1039/c5sc03695j. Epub 2015 Nov 12.

Abstract

Metal-free catalysts, such as graphene/carbon nanostructures, are highly cost-effective to replace expensive noble metals for CO reduction if fundamental issues, such as active sites and selectivity, are clearly understood. Using both density functional theory (DFT) and molecular dynamic calculations, we show that the interplay of N-doping and curvature can effectively tune the activity and selectivity of graphene/carbon-nanotube (CNT) catalysts. The CO activation barrier can be optimized to 0.58 eV for graphitic-N doped graphene edges, compared with 1.3 eV in the un-doped counterpart. The graphene catalyst without curvature shows strong selectivity for CO/HCOOH production, whereas the (6, 0) CNT with a high degree of curvature is effective for both CHOH and HCHO production. Curvature is also very influential to tune the overpotential for a given product, from 1.5 to 0.02 V for CO production and from 1.29 to 0.49 V for CHOH production. Hence, the graphene/CNT nanostructures offer great scope and flexibility for effective tunning of catalyst efficiency and selectivity, as shown here for CO reduction.

摘要

无金属催化剂,如石墨烯/碳纳米结构,如果能清楚地理解诸如活性位点和选择性等基本问题,那么用它们来替代昂贵的贵金属进行一氧化碳还原将具有很高的成本效益。通过使用密度泛函理论(DFT)和分子动力学计算,我们表明氮掺杂和曲率的相互作用可以有效地调节石墨烯/碳纳米管(CNT)催化剂的活性和选择性。对于石墨氮掺杂的石墨烯边缘,一氧化碳活化能垒可优化至0.58电子伏特,而未掺杂的对应物为1.3电子伏特。没有曲率的石墨烯催化剂对一氧化碳/甲酸的生成具有很强的选择性,而具有高度曲率的(6,0)碳纳米管对甲醇和甲醛的生成均有效。曲率对于调节给定产物的过电位也有很大影响,一氧化碳生成的过电位从1.5伏降至0.02伏,甲醇生成的过电位从1.29伏降至0.49伏。因此,如本文针对一氧化碳还原所示,石墨烯/碳纳米管纳米结构为有效调节催化剂效率和选择性提供了很大的空间和灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b8/5975832/0915d4344fff/c5sc03695j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验