Olsen Paul E, Laskar Jacques, Kent Dennis V, Kinney Sean T, Reynolds David J, Sha Jingeng, Whiteside Jessica H
Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10968;
Observatoire de Paris, Paris Sciences & Lettres, Research University, Sorbonne Université, 75006 Paris, France.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10664-10673. doi: 10.1073/pnas.1813901116. Epub 2019 Mar 4.
The Geological Orrery is a network of geological records of orbitally paced climate designed to address the inherent limitations of solutions for planetary orbits beyond 60 million years ago due to the chaotic nature of Solar System motion. We use results from two scientific coring experiments in Early Mesozoic continental strata: the Newark Basin Coring Project and the Colorado Plateau Coring Project. We precisely and accurately resolve the secular fundamental frequencies of precession of perihelion of the inner planets and Jupiter for the Late Triassic and Early Jurassic epochs (223-199 million years ago) using the lacustrine record of orbital pacing tuned only to one frequency (1/405,000 years) as a geological interferometer. Excepting Jupiter's, these frequencies differ significantly from present values as determined using three independent techniques yielding practically the same results. Estimates for the precession of perihelion of the inner planets are robust, reflecting a zircon U-Pb-based age model and internal checks based on the overdetermined origins of the geologically measured frequencies. Furthermore, although not indicative of a correct solution, one numerical solution closely matches the Geological Orrery, with a very low probability of being due to chance. To determine the secular fundamental frequencies of the precession of the nodes of the planets and the important secular resonances with the precession of perihelion, a contemporaneous high-latitude geological archive recording obliquity pacing of climate is needed. These results form a proof of concept of the Geological Orrery and lay out an empirical framework to map the chaotic evolution of the Solar System.
地质太阳系仪是一个轨道节奏气候的地质记录网络,旨在解决由于太阳系运动的混沌性质而导致的6000万年前以外行星轨道解决方案的固有局限性。我们使用了早中生代大陆地层的两个科学取芯实验结果:纽瓦克盆地取芯项目和科罗拉多高原取芯项目。我们利用仅调谐到一个频率(1/405,000年)的轨道节奏的湖相记录作为地质干涉仪,精确且准确地解析了晚三叠世和早侏罗世时期(2.23 - 1.99亿年前)内行星和木星近日点进动的长期基本频率。除了木星的频率外,这些频率与使用三种独立技术确定的当前值有显著差异,而这三种技术得出的结果几乎相同。内行星近日点进动的估计是可靠的,反映了基于锆石U - Pb的年龄模型以及基于地质测量频率的超定起源的内部检验。此外,尽管不能表明是正确的解决方案,但一个数值解与地质太阳系仪非常匹配,因偶然因素导致这种匹配的概率非常低。为了确定行星节点进动的长期基本频率以及与近日点进动的重要长期共振,需要一个记录气候倾角节奏的同期高纬度地质档案。这些结果构成了地质太阳系仪的概念验证,并构建了一个经验框架来描绘太阳系的混沌演化。