Suppr超能文献

蛋白质稳态网络的功能模块。

Functional Modules of the Proteostasis Network.

机构信息

Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.

出版信息

Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a033951. doi: 10.1101/cshperspect.a033951.

Abstract

Cells invest in an extensive network of factors to maintain protein homeostasis (proteostasis) and prevent the accumulation of potentially toxic protein aggregates. This proteostasis network (PN) comprises the machineries for the biogenesis, folding, conformational maintenance, and degradation of proteins with molecular chaperones as central coordinators. Here, we review recent progress in understanding the modular architecture of the PN in mammalian cells and how it is modified during cell differentiation. We discuss the capacity and limitations of the PN in maintaining proteome integrity in the face of proteotoxic stresses, such as aggregate formation in neurodegenerative diseases. Finally, we outline various pharmacological interventions to ameliorate proteostasis imbalance.

摘要

细胞投入大量的因子来维持蛋白质的平衡(稳态)和防止潜在有毒的蛋白质聚集物的积累。这个蛋白质稳态网络(PN)包含了蛋白质的生物发生、折叠、构象维持和降解的机制,以分子伴侣作为中央协调器。在这里,我们回顾了近年来对哺乳动物细胞中 PN 的模块化结构的理解的进展,以及它在细胞分化过程中是如何被修饰的。我们讨论了 PN 在面对蛋白质毒性应激时,如神经退行性疾病中的聚集体形成,维持蛋白质组完整性的能力和局限性。最后,我们概述了各种改善蛋白质平衡失调的药理学干预措施。

相似文献

1
Functional Modules of the Proteostasis Network.
Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a033951. doi: 10.1101/cshperspect.a033951.
2
In vivo aspects of protein folding and quality control.
Science. 2016 Jul 1;353(6294):aac4354. doi: 10.1126/science.aac4354.
3
Lipid Assemblies at the Crossroads of Aging, Proteostasis, and Neurodegeneration.
Trends Cell Biol. 2019 Dec;29(12):954-963. doi: 10.1016/j.tcb.2019.09.003. Epub 2019 Oct 25.
4
Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases.
Cold Spring Harb Perspect Biol. 2020 May 1;12(5):a034108. doi: 10.1101/cshperspect.a034108.
6
The proteostasis network and its decline in ageing.
Nat Rev Mol Cell Biol. 2019 Jul;20(7):421-435. doi: 10.1038/s41580-019-0101-y.
7
Proteostasis impairment in protein-misfolding and -aggregation diseases.
Trends Cell Biol. 2014 Sep;24(9):506-14. doi: 10.1016/j.tcb.2014.05.003. Epub 2014 Jun 16.
9
Molecular chaperone functions in protein folding and proteostasis.
Annu Rev Biochem. 2013;82:323-55. doi: 10.1146/annurev-biochem-060208-092442.
10
Shaping proteostasis at the cellular, tissue, and organismal level.
J Cell Biol. 2017 May 1;216(5):1231-1241. doi: 10.1083/jcb.201612111. Epub 2017 Apr 11.

引用本文的文献

1
A Unified Pathogenesis of Allergic Diseases; The Protein-Homeostasis-System Hypothesis.
Int J Mol Sci. 2025 Aug 28;26(17):8358. doi: 10.3390/ijms26178358.
2
Dual functionality of MDM2 in PROTACs expands the horizons of targeted protein degradation.
Biomark Res. 2025 Aug 27;13(1):111. doi: 10.1186/s40364-025-00826-7.
5
Conformational plasticity of a BiP-GRP94 chaperone complex.
Nat Struct Mol Biol. 2025 Jul 14. doi: 10.1038/s41594-025-01619-0.
7
'Intelligent' proteins.
Cell Mol Life Sci. 2025 Jun 14;82(1):239. doi: 10.1007/s00018-025-05770-1.
8
Clearance of protein aggregates during cell division.
Elife. 2025 Jun 6;13:RP96675. doi: 10.7554/eLife.96675.
10
A low-complexity linker as a driver of intra- and intermolecular interactions in DNAJB chaperones.
Nat Commun. 2025 May 31;16(1):5070. doi: 10.1038/s41467-025-60063-2.

本文引用的文献

1
Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
Cold Spring Harb Perspect Biol. 2020 Apr 1;12(4):a034074. doi: 10.1101/cshperspect.a034074.
2
The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2019 Sep 3;11(9):a033886. doi: 10.1101/cshperspect.a033886.
3
Signaling and Regulation of the Mitochondrial Unfolded Protein Response.
Cold Spring Harb Perspect Biol. 2019 Jun 3;11(6):a033944. doi: 10.1101/cshperspect.a033944.
4
Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins.
Annu Rev Biochem. 2019 Jun 20;88:337-364. doi: 10.1146/annurev-biochem-013118-111717. Epub 2018 Dec 3.
5
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
6
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
7
Selective vulnerability in neurodegenerative diseases.
Nat Neurosci. 2018 Oct;21(10):1350-1358. doi: 10.1038/s41593-018-0221-2. Epub 2018 Sep 24.
8
A new era for understanding amyloid structures and disease.
Nat Rev Mol Cell Biol. 2018 Dec;19(12):755-773. doi: 10.1038/s41580-018-0060-8.
9
Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC.
Cell. 2018 Sep 6;174(6):1507-1521.e16. doi: 10.1016/j.cell.2018.07.006. Epub 2018 Aug 9.
10
The coming of age of chaperone-mediated autophagy.
Nat Rev Mol Cell Biol. 2018 Jun;19(6):365-381. doi: 10.1038/s41580-018-0001-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验