Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Nat Microbiol. 2019 May;4(5):888-897. doi: 10.1038/s41564-019-0382-0. Epub 2019 Mar 4.
Clustered regularly interspaced short palindromic repeats (CRISPR) machineries are prokaryotic immune systems that have been adapted as versatile gene editing and manipulation tools. We found that CRISPR nucleases from two families, Cpf1 (also known as Cas12a) and Cas9, exhibit differential guide RNA (gRNA) sequence requirements for cleavage of the two strands of target DNA in vitro. As a consequence of the differential gRNA requirements, both Cas9 and Cpf1 enzymes can exhibit potent nickase activities on an extensive class of mismatched double-stranded DNA (dsDNA) targets. These properties allow the production of efficient nickases for a chosen dsDNA target sequence, without modification of the nuclease protein, using gRNAs with a variety of patterns of mismatch to the intended DNA target. In parallel to the nicking activities observed with purified Cas9 in vitro, we observed sequence-dependent nicking for both perfectly matched and partially mismatched target sequences in a Saccharomyces cerevisiae system. Our findings have implications for CRISPR spacer acquisition, off-target potential of CRISPR gene editing/manipulation, and tool development using homology-directed nicking.
成簇规律间隔短回文重复序列 (CRISPR) 机器是原核生物的免疫系统,现已被改造成多功能的基因编辑和操作工具。我们发现,来自两个家族的 CRISPR 核酸酶,Cpf1(也称为 Cas12a)和 Cas9,在体外切割靶 DNA 双链时表现出不同的向导 RNA (gRNA) 序列要求。由于 gRNA 要求的差异,Cas9 和 Cpf1 酶都可以在广泛的错配双链 DNA (dsDNA) 靶标上表现出有效的切口酶活性。这些特性允许在不修饰核酸酶蛋白的情况下,使用与目标 DNA 靶标具有多种错配模式的 gRNA ,为选定的 dsDNA 靶标序列产生高效的切口酶。除了在体外纯化的 Cas9 观察到的切口活性外,我们还在酿酒酵母系统中观察到了与完全匹配和部分错配靶序列相关的序列依赖性切口。我们的研究结果对 CRISPR 间隔序列的获取、CRISPR 基因编辑/操作的脱靶潜力以及使用同源定向切口的工具开发具有重要意义。