Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France; email:
Sorbonne Universités, CNRS, 75005 Paris, France.
Annu Rev Biophys. 2019 May 6;48:231-253. doi: 10.1146/annurev-biophys-052118-115638. Epub 2019 Mar 5.
The genetic information that instructs transcription and other cellular functions is carried by the chromosomes, polymers of DNA in complex with histones and other proteins. These polymers are folded inside nuclei five orders of magnitude smaller than their linear length, and many facets of this folding correlate with or are causally related to transcription and other cellular functions. Recent advances in sequencing and imaging-based techniques have enabled new views into several layers of chromatin organization. These experimental findings are accompanied by computational modeling efforts based on polymer physics that can provide mechanistic insights and quantitative predictions. Here, we review current knowledge of the main levels of chromatin organization, from the scale of nucleosomes to the entire nucleus, our current understanding of their underlying biophysical and molecular mechanisms, and some of their functional implications.
指导转录和其他细胞功能的遗传信息由染色体携带,染色体是 DNA 与组蛋白和其他蛋白质复合而成的聚合物。这些聚合物在核内折叠,其折叠的许多方面与转录和其他细胞功能相关或与之有因果关系,尽管折叠的核内空间比其线性长度小五个数量级。近年来,基于测序和成像的技术取得了新进展,使人们能够对染色质组织的几个层次有新的认识。这些实验结果伴随着基于聚合物物理的计算建模工作,这些工作可以提供机械方面的见解和定量预测。在这里,我们综述了目前对染色质组织的主要层次的认识,从核小体的尺度到整个细胞核,以及对其潜在的生物物理和分子机制的理解,还有一些与功能相关的认识。