Suppr超能文献

关于行向两两负象限相依随机变量阵列的一些均值收敛定理。

Some mean convergence theorems for arrays of rowwise pairwise negative quadrant dependent random variables.

作者信息

Chandra Tapas K, Li Deli, Rosalsky Andrew

机构信息

1Applied Statistics Division, Indian Statistical Institute, Kolkata, India.

2Department of Mathematical Sciences, Lakehead University, Thunder Bay, Canada.

出版信息

J Inequal Appl. 2018;2018(1):221. doi: 10.1186/s13660-018-1811-y. Epub 2018 Aug 23.

Abstract

For arrays of rowwise pairwise negative quadrant dependent random variables, conditions are provided under which weighted averages converge in mean to 0 thereby extending a result of Chandra, and conditions are also provided under which normed and centered row sums converge in mean to 0. These results are new even if the random variables in each row of the array are independent. Examples are provided showing (i) that the results can fail if the rowwise pairwise negative quadrant dependent hypotheses are dispensed with, and (ii) that almost sure convergence does not necessarily hold.

摘要

对于逐行成对负象限相依随机变量的阵列,给出了加权平均值依均值收敛到0的条件,从而推广了钱德拉的一个结果,还给出了标准化且中心化的行和依均值收敛到0的条件。即使阵列每行中的随机变量是独立的,这些结果也是新的。给出的例子表明:(i)如果摒弃逐行成对负象限相依假设,结果可能不成立;(ii)几乎必然收敛不一定成立。

相似文献

10
Online Pairwise Learning Algorithms.在线成对学习算法
Neural Comput. 2016 Apr;28(4):743-77. doi: 10.1162/NECO_a_00817. Epub 2016 Feb 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验