Béres Ferenc, Pálovics Róbert, Oláh Anna, Benczúr András A
1Institute for Computer Science and Control, Hungarian Academy of Sciences, (MTA SZTAKI), Kende Street 13-17, Budapest, H-1111 Hungary.
2Eötvös University Budapest, Pázmány s. 1, Budapest, H-1117 Hungary.
Appl Netw Sci. 2018;3(1):32. doi: 10.1007/s41109-018-0080-5. Epub 2018 Aug 14.
A plethora of centrality measures or rankings have been proposed to account for the importance of the nodes of a network. In the seminal study of Boldi and Vigna (2014), the comparative evaluation of centrality measures was termed a difficult, arduous task. In networks with fast dynamics, such as the Twitter mention or retweet graphs, predicting emerging centrality is even more challenging. Our main result is a new, temporal walk based dynamic centrality measure that models temporal information propagation by considering the order of edge creation. Dynamic centrality measures have already started to emerge in publications; however, their empirical evaluation is limited. One of our main contributions is creating a quantitative experiment to assess temporal centrality metrics. In this experiment, our new measure outperforms graph snapshot based static and other recently proposed dynamic centrality measures in assigning the highest time-aware centrality to the actually relevant nodes of the network. Additional experiments over different data sets show that our method perform well for detecting concept drift in the process that generates the graphs.
人们已经提出了大量的中心性度量或排名方法来解释网络节点的重要性。在博尔迪和维尼亚(2014年)的开创性研究中,中心性度量的比较评估被认为是一项艰巨、费力的任务。在具有快速动态变化的网络中,如推特提及或转发图,预测新兴的中心性更具挑战性。我们的主要成果是一种新的基于时间游走的动态中心性度量,它通过考虑边创建的顺序来对时间信息传播进行建模。动态中心性度量已经开始在出版物中出现;然而,它们的实证评估是有限的。我们的主要贡献之一是创建了一个定量实验来评估时间中心性指标。在这个实验中,我们的新度量在将最高的时间感知中心性分配给网络中实际相关的节点方面,优于基于图快照的静态中心性度量和其他最近提出的动态中心性度量。在不同数据集上的额外实验表明,我们的方法在检测生成图的过程中的概念漂移方面表现良好。