Suppr超能文献

基于连续时间量子游走的加权图中心性测试

Continuous-time quantum walk based centrality testing on weighted graphs.

作者信息

Wang Yang, Xue Shichuan, Wu Junjie, Xu Ping

机构信息

Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China.

出版信息

Sci Rep. 2022 Apr 9;12(1):6001. doi: 10.1038/s41598-022-09915-1.

Abstract

Centrality measure is an essential tool in network analysis and widely used in the domain of computer science, biology and sociology. Taking advantage of the speedup offered by quantum computation, various quantum centrality measures have been proposed. However, few work of quantum centrality involves weighted graphs, while the weight of edges should be considered in certain real-world networks. In this work, we extend the centrality measure based on continuous-time quantum walk to weighted graphs. We testify the feasibility and reliability of this quantum centrality using an ensemble of 41,675 graphs with various topologies and comparing with the eigenvector centrality measure. The average Vigna's correlation index of all the tested graphs with all edge weights in [1, 10] is as high as 0.967, indicating the pretty good consistency of rankings by the continuous-time quantum walk centrality and the eigenvector centrality. The intuitive consistency of the top-ranked vertices given by this quantum centrality measure and classical centrality measures is also demonstrated on large-scale weighted graphs. Moreover, the range of the continuous-time quantum walk centrality values is much bigger than that of classical centralities, which exhibits better distinguishing ability to pick the important vertices from the ones with less importance. All these results show that the centrality measure based on continuous-time quantum walk still works well on weighted graphs.

摘要

中心性度量是网络分析中的一项重要工具,在计算机科学、生物学和社会学领域有着广泛应用。利用量子计算带来的加速优势,人们提出了各种量子中心性度量方法。然而,很少有量子中心性方面的工作涉及加权图,而在某些现实世界的网络中,边的权重是需要考虑的。在这项工作中,我们将基于连续时间量子行走的中心性度量扩展到加权图。我们使用由41675个具有各种拓扑结构的图组成的集合,并与特征向量中心性度量进行比较,来验证这种量子中心性的可行性和可靠性。所有测试图在边权重取值范围为[1, 10]时的平均维尼亚相关指数高达0.967,这表明连续时间量子行走中心性和特征向量中心性的排名具有相当好的一致性。在大规模加权图上,也展示了这种量子中心性度量与经典中心性度量给出的排名靠前顶点的直观一致性。此外,连续时间量子行走中心性值的范围比经典中心性的范围大得多,这表明它在从重要性较低的顶点中挑选出重要顶点方面具有更好的区分能力。所有这些结果表明,基于连续时间量子行走的中心性度量在加权图上仍然表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da10/8994786/02205bd74595/41598_2022_9915_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验