Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
Sci Rep. 2018 May 9;8(1):7354. doi: 10.1038/s41598-018-25727-8.
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
线粒体是具有高度保守代谢功能的双层膜亚细胞细胞器,包括 ATP 产生。线粒体的形状通过分裂和融合事件的联合作用不断变化,使线粒体网络具有高度动态性。线粒体在各种模型中的肌肉退化过程中的病理变化中起着重要作用,线粒体动力学通常会被破坏。目前,线粒体在导致肌肉退化的分子机制中的确切作用仍知之甚少。在这里,我们报告了 DRP-1 在调节肌营养不良相关肌肉退化诱导的细胞凋亡中的作用。我们发现:(i)肌营养不良相关的肌肉退化伴随着线粒体碎片化的急剧增加,这种碎片化可以通过线粒体动力学的遗传操作来挽救;(ii)分裂基因 drp-1 的功能丧失或融合基因 eat-3 和 fzo-1 的过表达会减少肌肉退化和提高肌营养不良突变体蠕虫的运动能力;(iii)DRP-1 介导的细胞凋亡和其他凋亡执行器在肌营养不良相关的肌肉细胞死亡中起重要作用;(iv)DRP-1 介导的细胞凋亡也可能诱导肌肉细胞的年龄依赖性丧失。总之,我们的研究结果表明,在秀丽隐杆线虫中,一种涉及线粒体动力学的机制可能通过细胞凋亡来应对肌肉退化的触发因素。