Suppr超能文献

自动检测动态脑电图记录中的癫痫发作的准确率。

Automated seizure detection accuracy for ambulatory EEG recordings.

机构信息

From the Department of Neurology (K.A.G.O., Y.M.-D., E.M.B., S.S.), Northwestern University, Chicago, IL; and Department of Neurology (P.B.), Baylor College of Medicine, Houston, TX.

出版信息

Neurology. 2019 Apr 2;92(14):e1540-e1546. doi: 10.1212/WNL.0000000000007237. Epub 2019 Mar 6.

Abstract

OBJECTIVE

To investigate the accuracy of preselected software automatic seizure files to detect at least one seizure per study in prolonged ambulatory EEG recording.

METHODS

All the prolonged ambulatory EEG recordings (>24 hours) read at the Northwestern Memorial Hospital from January 2013 to October 2017 were included. We selected only the first study of each patient. We reviewed the studies entirely, and processed the recordings through 1 of 3 different detection software that are commercially available (Persyst 11, Persyst 12, and Gotman TM Event Detection). The proportion of patients with at least one electrographic seizure (≥10 seconds) correctly identified by a seizure detector was calculated. Finally, we evaluated whether the type of seizure (focal vs generalized) may affect the chances of being automatically detected.

RESULTS

We read 1,478 ambulatory EEG studies entirely (2,323 days of EEG recording; average 1.6 d/study). From the first study of each patient (1,257 studies), we found electrographic seizures in 70 (5.6%) studies. In 37 of 70 patients (53%), the automatic detectors correctly identified at least one seizure. Detections happened slightly more frequently in generalized seizures (14/20, 70%) compared to focal seizures (23/50, 46%) ( = 0.06).

CONCLUSION

Seizures were found in 5.6% of the studies. Automatic seizure detectors identified at least one electrographic seizure in only 53% of the studies. They performed slightly better detecting generalized than focal seizures. Therefore, the review of only automatically selected segments may be of decreased value to identify seizures, in particular when focal seizures are suspected.

摘要

目的

研究预选自动癫痫发作文件在检测延长动态脑电图记录中至少一次发作的准确性。

方法

纳入 2013 年 1 月至 2017 年 10 月西北纪念医院所有的延长动态脑电图记录(>24 小时)。我们仅选择每位患者的第一项研究。我们全面回顾了这些研究,并通过 3 种不同的商业可用检测软件(Persyst 11、Persyst 12 和 Gotman TM 事件检测)处理了这些记录。通过发作检测器正确识别至少一个脑电图发作(≥10 秒)的患者比例。最后,我们评估了发作类型(局灶性与全面性)是否会影响自动检测的机会。

结果

我们全面阅读了 1478 项动态脑电图研究(2323 天脑电图记录;平均 1.6 天/研究)。从每位患者的第一项研究(1257 项研究)中,我们发现 70 项研究(5.6%)存在脑电图发作。在 70 名患者中的 37 名(53%)中,自动检测器正确识别了至少一次发作。与局灶性发作(23/50,46%)相比,全面性发作(14/20,70%)中的检测更频繁(=0.06)。

结论

研究中发现了 5.6%的发作。自动癫痫发作检测器仅在 53%的研究中识别出至少一次脑电图发作。它们在检测全面性发作方面的表现略优于局灶性发作。因此,仅审查自动选择的片段可能对识别发作的价值降低,特别是当怀疑为局灶性发作时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验