IBM Research, Melbourne, Australia.
IBM Research, T. J. Watson Research Center, USA.
EBioMedicine. 2021 Apr;66:103275. doi: 10.1016/j.ebiom.2021.103275. Epub 2021 Mar 18.
Assistive automatic seizure detection can empower human annotators to shorten patient monitoring data review times. We present a proof-of-concept for a seizure detection system that is sensitive, automated, patient-specific, and tunable to maximise sensitivity while minimizing human annotation times. The system uses custom data preparation methods, deep learning analytics and electroencephalography (EEG) data.
Scalp EEG data of 365 patients containing 171,745 s ictal and 2,185,864 s interictal samples obtained from clinical monitoring systems were analysed as part of a crowdsourced artificial intelligence (AI) challenge. Participants were tasked to develop an ictal/interictal classifier with high sensitivity and low false alarm rates. We built a challenge platform that prevented participants from downloading or directly accessing the data while allowing crowdsourced model development.
The automatic detection system achieved tunable sensitivities between 75.00% and 91.60% allowing a reduction in the amount of raw EEG data to be reviewed by a human annotator by factors between 142x, and 22x respectively. The algorithm enables instantaneous reviewer-managed optimization of the balance between sensitivity and the amount of raw EEG data to be reviewed.
This study demonstrates the utility of deep learning for patient-specific seizure detection in EEG data. Furthermore, deep learning in combination with a human reviewer can provide the basis for an assistive data labelling system lowering the time of manual review while maintaining human expert annotation performance.
IBM employed all IBM Research authors. Temple University employed all Temple University authors. The Icahn School of Medicine at Mount Sinai employed Eren Ahsen. The corresponding authors Stefan Harrer and Gustavo Stolovitzky declare that they had full access to all the data in the study and that they had final responsibility for the decision to submit for publication.
辅助自动癫痫发作检测可以使人类注释者能够缩短患者监测数据的审查时间。我们提出了一个概念验证,用于展示一种敏感、自动化、个体化且可调节的癫痫检测系统,以最大限度地提高敏感性,同时最大限度地减少人类注释时间。该系统使用了自定义的数据准备方法、深度学习分析和脑电图 (EEG) 数据。
作为众包人工智能 (AI) 挑战的一部分,分析了来自临床监测系统的 365 名患者的头皮 EEG 数据,其中包含 171745 秒的发作期和 2185864 秒的发作间期样本。参与者的任务是开发一种具有高敏感性和低误报率的发作/发作间期分类器。我们构建了一个挑战平台,防止参与者下载或直接访问数据,同时允许众包模型开发。
自动检测系统实现了可调节的敏感性,在 75.00%到 91.60%之间,允许人类注释者审查的原始 EEG 数据量分别减少 142 倍和 22 倍。该算法能够实现即时的审查者管理优化,在敏感性和要审查的原始 EEG 数据量之间取得平衡。
这项研究证明了深度学习在 EEG 数据中用于个体化癫痫检测的效用。此外,深度学习与人类审查员相结合,可以为辅助数据标记系统提供基础,降低手动审查的时间,同时保持人类专家注释的性能。
IBM 雇用了所有 IBM 研究人员。天普大学雇用了所有天普大学的作者。西奈山伊坎医学院雇用了 Eren Ahsen。通讯作者 Stefan Harrer 和 Gustavo Stolovitzky 声明他们对研究中的所有数据具有完全访问权限,并且对提交发表的最终决定负责。