Suppr超能文献

电阻抗断层成像中的压缩感知用于呼吸监测。

Compressive sensing in electrical impedance tomography for breathing monitoring.

机构信息

Department of Electronic and Electrical Engineering, University College London, London, United Kingdom.

出版信息

Physiol Meas. 2019 Apr 3;40(3):034010. doi: 10.1088/1361-6579/ab0daa.

Abstract

OBJECTIVE

Electrical impedance tomography (EIT) is a functional imaging technique in which cross-sectional images of structures are reconstructed based on boundary trans-impedance measurements. Continuous functional thorax monitoring using EIT has been extensively researched. Increasing the number of electrodes, number of planes and frame rate may improve clinical decision making. Thus, a limiting factor in high temporal resolution, 3D and fast EIT is the handling of the volume of raw impedance data produced for transmission and its subsequent storage. Owing to the periodicity (i.e. sparsity in frequency domain) of breathing and other physiological variations that may be reflected in EIT boundary measurements, data dimensionality may be reduced efficiently at the time of sampling using compressed sensing techniques. This way, a fewer number of samples may be taken.

APPROACH

Measurements using a 32-electrode, 48-frames-per-second EIT system from 30 neonates were post-processed to simulate random demodulation acquisition method on 2000 frames (each consisting of 544 measurements) for compression ratios (CRs) ranging from 2 to 100. Sparse reconstruction was performed by solving the basis pursuit problem using SPGL1 package. The global impedance data (i.e. sum of all 544 measurements in each frame) was used in the subsequent studies. The signal to noise ratio (SNR) for the entire frequency band (0 Hz-24 Hz) and three local frequency bands were analysed. A breath detection algorithm was applied to traces and the subsequent error-rates were calculated while considering the outcome of the algorithm applied to a down-sampled and linearly interpolated version of the traces as the baseline.

MAIN RESULTS

SNR degradation was generally proportional with CR. The mean degradation for 0 Hz-8 Hz (of interest for the target physiological variations) was below ~15 dB for all CRs. The error-rates in the outcome of the breath detection algorithm in the case of decompressed traces were lower than those associated with the corresponding down-sampled traces for CR  ⩾  25, corresponding to sub-Nyquist rate for breathing frequency. For instance, the mean error-rate associated with CR  =  50 was ~60% lower than that of the corresponding down-sampled traces.

SIGNIFICANCE

To the best of our knowledge, no other study has evaluated the applicability of compressive sensing techniques on raw boundary impedance data in EIT. While further research should be directed at optimising the acquisition and decompression techniques for this application, this contribution serves as the baseline for future efforts.

摘要

目的

电阻抗断层成像(EIT)是一种功能成像技术,它基于边界跨阻测量来重建结构的横截面图像。连续的功能性胸部监测已经得到了广泛的研究。增加电极数量、平面数量和帧率可能会改善临床决策。因此,在高时间分辨率、3D 和快速 EIT 中,限制因素是处理传输产生的大量原始阻抗数据及其随后的存储。由于呼吸的周期性(即在频域中的稀疏性)和其他可能反映在 EIT 边界测量中的生理变化,因此可以使用压缩感知技术在采样时有效地降低数据的维度。这样,就可以减少采样的数量。

方法

对 30 名新生儿的 32 电极、48 帧/秒的 EIT 系统进行了后处理,以模拟随机解调采集方法,对 2000 帧(每帧包含 544 个测量值)进行压缩比(CR)为 2 至 100 的模拟。稀疏重建是通过使用 SPGL1 包求解基础追求问题来完成的。随后的研究中使用了全局阻抗数据(即每帧中所有 544 个测量值的总和)。分析了整个频带(0 Hz-24 Hz)和三个局部频带的信噪比(SNR)。应用呼吸检测算法对迹线进行处理,并在考虑将算法应用于迹线的下采样和线性内插版本的结果作为基线的情况下计算后续的错误率。

主要结果

信噪比的退化通常与 CR 成正比。对于所有 CR,0 Hz-8 Hz(感兴趣的目标生理变化)的平均退化低于~15 dB。在解压迹线的情况下,呼吸检测算法的输出错误率低于与相应下采样迹线的错误率,对于 CR≥25,对应于呼吸频率的亚奈奎斯特率。例如,与 CR=50 相关联的平均错误率比相应的下采样迹线低约 60%。

意义

据我们所知,没有其他研究评估过压缩感知技术在 EIT 中对原始边界阻抗数据的适用性。虽然应该进一步研究优化这种应用的采集和解压缩技术,但本研究为未来的工作提供了基准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验