Suppr超能文献

在电阻抗断层成像记录中识别和分析稳定呼吸期。

Identification and analysis of stable breathing periods in electrical impedance tomography recordings.

机构信息

Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University, Thessaloniki, Greece.

Department of Informatics and Computer Engineering, University of West Attica, Greece.

出版信息

Physiol Meas. 2021 Jun 29;42(6). doi: 10.1088/1361-6579/ac08e5.

Abstract

. In this paper, an automated stable tidal breathing period (STBP) identification method based on processing electrical impedance tomography (EIT) waveforms is proposed and the possibility of detecting and identifying such periods using EIT waveforms is analyzed. In wearable chest EIT, patients breathe spontaneously, and therefore, their breathing pattern might not be stable. Since most of the EIT feature extraction methods are applied to STBPs, this renders their automatic identification of central importance.. The EIT frame sequence is reconstructed from the raw EIT recordings and the raw global impedance waveform (GIW) is computed. Next, the respiratory component of the raw GIW is extracted and processed for the automatic respiratory cycle (breath) extraction and their subsequent grouping into STBPs.. We suggest three criteria for the identification of STBPs, namely, the coefficient of variation of (i) breath tidal volume, (ii) breath duration and (iii) end-expiratory impedance. The total number of true STBPs identified by the proposed method was 294 out of 318 identified by the expert corresponding to accuracy over 90%. Specific activities such as speaking, eating and arm elevation are identified as sources of false positives and their discrimination is discussed.. Simple and computationally efficient STBP detection and identification is a highly desirable component in the EIT processing pipeline. Our study implies that it is feasible, however, the determination of its limits is necessary in order to consider the implementation of more advanced and computationally demanding approaches such as deep learning and fusion with data from other wearable sensors such as accelerometers and microphones.

摘要

. 在本文中,提出了一种基于处理电阻抗断层成像(EIT)波形的自动稳定潮式呼吸期(STBP)识别方法,并分析了使用 EIT 波形检测和识别这种时期的可能性。在可穿戴式胸部 EIT 中,患者会自发呼吸,因此他们的呼吸模式可能不稳定。由于大多数 EIT 特征提取方法都应用于 STBPs,因此自动识别这些方法非常重要。. 从原始 EIT 记录中重建 EIT 帧序列,并计算原始全局阻抗波形(GIW)。接下来,提取原始 GIW 的呼吸分量并进行处理,以自动提取呼吸周期(呼吸)并将其分组为 STBPs。. 我们提出了三种识别 STBPs 的标准,即(i)呼吸潮气量、(ii)呼吸持续时间和(iii)呼气末阻抗的变异系数。通过所提出的方法识别的真实 STBPs 总数为 294 个,而专家识别的 STBPs 总数为 318 个,准确率超过 90%。说话、进食和手臂抬高等特定活动被识别为假阳性的来源,并讨论了它们的区分。. 简单且计算效率高的 STBP 检测和识别是 EIT 处理管道中非常需要的组件。我们的研究表明,这是可行的,然而,为了考虑实施更先进和计算要求更高的方法,如深度学习以及与来自其他可穿戴传感器(如加速度计和麦克风)的数据融合,确定其限制是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验