Suppr超能文献

在医疗现场实施科学有效、具有成本效益且可扩展的数据收集系统:克利夫兰诊所 OME 队列。

Implementing a Scientifically Valid, Cost-Effective, and Scalable Data Collection System at Point of Care: The Cleveland Clinic OME Cohort.

出版信息

J Bone Joint Surg Am. 2019 Mar 6;101(5):458-464. doi: 10.2106/JBJS.18.00767.

Abstract

BACKGROUND

Improving outcomes after surgical procedures and determining the value of health care can be facilitated by a scientifically valid, cost-effective, and scalable data outcome collection system. We hypothesized that such a system could be constructed in orthopaedic surgery to (1) capture >95% of baseline validated patient-reported outcome measures (PROMs) for patients undergoing elective surgery, (2) capture >95% of surgeon-entered data on disease severity and treatment, and (3) be implemented as standard clinical care in daily practice.

METHODS

A modified Research Electronic Data Capture (REDCap) system was developed and was implemented at the time of surgery in a prospective cohort to collect demographic data, general health PROMs, joint-specific PROMs, and disease severity and treatments from patients and surgeons. All elective knee, hip, and shoulder orthopaedic surgical procedures performed in the Cleveland Clinic system at 7 hospitals were included.

RESULTS

Of 16,021 consecutive eligible patients (February 18, 2015, to July 31, 2017), 2% (320) were excluded because of language or physical barriers, and 0.6% (91) of the remaining 15,701 patients refused to participate. Of the remaining 15,610 patients, 97.4% (15,202) completed PROMs, and surgeons provided details on the disease severity and treatment for 99.9% (15,592) of the 15,610 patients. Overall, 97.3% (15,185) of the 15,610 patients had complete patient-reported and surgeon-reported baseline enrollment. The median completion time was 11.5 minutes for the patients and 1.6 minutes for the surgeons. The overall complete 1-year follow-up rate was 72.5% (9,354 of 12,896).

CONCLUSIONS

A data collection system with validated measures with >97% baseline completion of PROMs and surgeon forms regarding disease severity and treatments, across elective knee, hip, and shoulder orthopaedic surgical procedures, was successfully implemented at 7 hospitals. The system is potentially scalable to the entire orthopaedic community and could serve as a template for all procedural-based specialties during routine patient care.

摘要

背景

通过科学有效的、具有成本效益的和可扩展的数据结果收集系统,可以改善手术治疗后的结果,并确定医疗保健的价值。我们假设可以在骨科手术中构建这样一个系统,以(1)采集接受择期手术的患者超过 95%的基线验证后的患者报告的结果测量(PROMs),(2)采集外科医生关于疾病严重程度和治疗的超过 95%的输入数据,以及(3)在日常临床护理中作为标准临床护理实施。

方法

开发了一个经过修改的研究电子数据捕获(REDCap)系统,并在前瞻性队列中于手术时实施,以从患者和外科医生那里收集人口统计学数据、一般健康 PROMs、关节特定 PROMs、疾病严重程度和治疗。克利夫兰诊所系统的所有 7 家医院的膝关节、髋关节和肩部骨科择期手术均包括在内。

结果

在 16,021 名连续合格的患者中(2015 年 2 月 18 日至 2017 年 7 月 31 日),有 2%(320 名)因语言或身体障碍被排除在外,而其余 15,701 名患者中有 0.6%(91 名)拒绝参加。在剩余的 15,610 名患者中,97.4%(15,202 名)完成了 PROMs,外科医生提供了 99.9%(15,592 名)的疾病严重程度和治疗的详细信息。总体而言,15,610 名患者中有 97.3%(15,185 名)完成了患者报告和外科医生报告的完整基线登记。患者的中位完成时间为 11.5 分钟,外科医生为 1.6 分钟。总体而言,1 年的完整随访率为 72.5%(9,354 名/12,896 名)。

结论

在 7 家医院成功实施了一种具有验证措施的数据收集系统,该系统涵盖了膝关节、髋关节和肩部骨科择期手术,患者的 PROMs 和外科医生关于疾病严重程度和治疗的表格基线完成率超过 97%。该系统具有潜在的可扩展性,可以推广到整个骨科社区,并可作为所有基于程序的专业在常规患者护理中的模板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验