Suppr超能文献

Vein Graft Interposition: A Training Model Using Gradually Thawed Cryopreserved Vessels.

作者信息

Safi Ali-Farid, Safi Sema, Tayeh Mahmoud, Gojowy David, Timmer Marco, Goldbrunner Roland, Kauke Martin

机构信息

Department for Oral and Craniomaxillofacial Plastic Surgery, University Hospital of Cologne.

Division of Plastic Surgery, Department of Surgery, Sankt Vizenz Hospital, Cologne.

出版信息

J Craniofac Surg. 2019 May/Jun;30(3):e213-e216. doi: 10.1097/SCS.0000000000005197.

Abstract

INTRODUCTION

Microsurgical interposition of vein grafts is an extraordinarily filigree surgical technique, which requires both sound theoretical knowledge and solid manual skills. Although there are a large number of training models, the majority of these are either relatively expensive, technically complex, or employ synthetic materials with poor resemblance to human tissue. The authors' model allows training of ex vivo vein graft interposition on gradually thawed cryopreserved vessels and it, therefore, is cost-efficient and readily available when needed. Furthermore, it respects the 3R-principle (Reduce-Refine-Replace), as it is based on rat cadaveric vessels.

METHODS

Three trainees with basic microsurgical experience, but without prior performance of vein graft interpositioning, were chosen to perform 20 femoral vein graft (5 mm) interpositions into femoral artery defects. The patency and leakage rate served as qualitative variable and operation time as a quantitative variable for efficiency control.

RESULTS

For the first half of trials, the trainees had a patency failure rate of 50% and for the second half a rate of 13.3%. The leakage rate noticeably decreased from 44.4% in the first half of trials to 10% in the second half. Although the trainees needed 60 minutes on average for their first 10 trials, they improved to 51 minutes for their last 10 anastomoses.

CONCLUSION

The authors' microsurgical model offers a simple, low-cost simulation training, specifically designed for learning of vein graft interposition into arterial defects. The model is associated with a high learning curve, based on an objective control of the anastomoses by assessment of the patency, leakage, and operation time.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验