Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany.
PLoS One. 2019 Mar 7;14(3):e0212956. doi: 10.1371/journal.pone.0212956. eCollection 2019.
Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.
鱼类在早期具有透明性,同时拥有庞大的遗传工具包,非常适合用于活体成像。进一步推进成像的主要挑战在于荧光团的选择、标本的固定以及消除色素沉着的方法。我们解决了所有这三个问题,并通过高通量延时成像确定了首选的荧光团和麻醉剂。我们的研究结果表明,当需要使用成熟的抗体和纳米抗体时,eGFP 和 mCherry 是活体荧光实验的最佳保守选择。尽管如此,mVenusNB 和 mGFPmut2 在体内仍能提供最高的绝对荧光强度。在长时间的活体成像过程中,固定是至关重要的。在这里,传统方法被 α-银环蛇毒素的 mRNA 注射所超越,后者可以实现完全和可逆的、短暂的固定。与通过 CRISPR/Cas9 介导的基因编辑在斑马鱼中靶向敲除 oca2 和 pnp4a 所建立的完全透明的幼鱼和成鱼相结合,我们可以极大地改善胚胎后期鱼类的成像条件,现在可以在没有麻醉药物或色素沉着引起的副作用的情况下对不断生长的视网膜、大脑、鳃和内脏器官进行光片显微镜检查。