Suppr超能文献

海洋细菌中的琼脂特异性水解酶 AgaC 定义了一个新的 GH16 蛋白亚家族。

The agar-specific hydrolase AgaC from the marine bacterium defines a new GH16 protein subfamily.

机构信息

From Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France.

the Institut National de la Recherche Agronomique (INRA), Unité de Recherche Biopolymères Interactions Assemblages (BIA), 44000 Nantes, France, and.

出版信息

J Biol Chem. 2019 Apr 26;294(17):6923-6939. doi: 10.1074/jbc.RA118.006609. Epub 2019 Mar 7.

Abstract

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone ( presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium (AgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that AgaC hydrolyzes not only agarose but also complex agars from s species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of AgaC on agar extracted from By resolving the crystal structure of AgaC at high resolution (1.3 Å) and comparison with the structures of AgaB and PorA in complex with their respective substrates, we determined that AgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that AgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.

摘要

琼胶是来源于红藻的硫酸化半乳聚糖,由交替连接的 D-半乳糖(G 单元)和 L-半乳糖(L 单元)通过α-1,3 和β-1,4 糖苷键组成。这些多糖具有高度复杂性,其主链上存在多种修饰(存在 3,6-脱水桥(LA 单元)和硫酸化及甲基化)。目前,已经对能够水解琼胶的细菌多糖酶(β-琼胶酶和β-藻红蛋白酶)进行了研究,这些酶作用于简单的琼脂糖,而作用于含有琼脂二糖(G-LA)和藻红二糖(GL6S)基序的聚合物藻红蛋白的情况则更为少见。因此,细菌如何降解复杂的琼胶仍然是一个悬而未决的问题。在这里,我们研究了一种来自海洋细菌(AgaC)的酶,该酶与糖苷水解酶 16(GH16)家族的β-琼胶酶和β-藻红蛋白酶具有较远的亲缘关系。利用大型红藻集合,我们证明 AgaC 不仅能水解琼脂糖,还能水解来自 s 属物种的复杂琼胶。通过串联质谱分析,我们阐明了 AgaC 对从 中提取的琼脂作用后释放的一种纯化六糖产物 L6S-G-LA2Me-G(2Pentose)-LA2S-G 的结构。通过高分辨率(1.3 Å)解析 AgaC 的晶体结构并与 AgaB 和 PorA 与其各自底物复合物的结构进行比较,我们确定 AgaC 通过一种与经典β-琼胶酶不同的机制识别琼脂糖。此外,我们鉴定了与复杂寡糖结合有关的保守残基,并证明酸性多糖的 pH 微环境可能对水解酶活性有影响。最后,系统发育分析支持了这样一种观点,即 AgaC 同源物定义了一个与β-藻红蛋白酶和经典β-琼胶酶不同的新 GH16 亚家族。

相似文献

5
The three-dimensional structures of two beta-agarases.两种β-琼脂糖酶的三维结构。
J Biol Chem. 2003 Nov 21;278(47):47171-80. doi: 10.1074/jbc.M308313200. Epub 2003 Sep 11.

引用本文的文献

本文引用的文献

2
6
Polysaccharide Utilization Loci: Fueling Microbial Communities.多糖利用位点:为微生物群落提供能量
J Bacteriol. 2017 Jul 11;199(15). doi: 10.1128/JB.00860-16. Print 2017 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验