Zhuang Jinhua, Zhang Yuxi, Wang Yawei, Han Zhenggang, Yang Jiangke
College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
Int J Mol Sci. 2025 Mar 30;26(7):3215. doi: 10.3390/ijms26073215.
This study investigates the biochemical properties of two xylanases, ZgXyn10A and CaXyn10B, which are members of the glycoside hydrolase family 10 (GH10) and originate from the marine Bacteroidetes species and , respectively. Utilizing an auto-induction expression system in , high-purity recombinant forms of these enzymes were successfully produced. Biochemical assays revealed that ZgXyn10A and CaXyn10B exhibit optimal activities at 40 °C and 30 °C, respectively, and demonstrate a high sensitivity to temperature fluctuations. Unlike conventional low-temperature enzymes, these xylanases retain only a fraction of their maximal activity at lower temperatures. To gain deeper insights into the structural and functional properties of these marine xylanases, two thermostable GH10 xylanases, TmxB and CoXyn10A, which share comparable amino acid sequence identity with ZgXyn10A and CaXyn10B, were selected for structural comparison. All four marine xylanases share a nearly similar three-dimensional structural topology. Molecular dynamics simulation indicated a striking difference in structural fluctuations between the low-temperature and thermostable xylanases, as evidenced by the distinct root mean square deviation values. Moreover, root mean square fluctuation analysis specifically identified the β3-α3 and β7-α7 loop regions within the substrate-binding cleft as crucial determinants of the temperature characteristics of these GH10 xylanases. Our findings establish loop dynamics as a key evolutionary driver in the thermal adaptation of GH10 xylanases and propose a loop engineering strategy for the development of industrial biocatalysts with tailored temperature responses, particularly for lignocellulosic biomass processing under moderate thermal conditions.
本研究调查了两种木聚糖酶ZgXyn10A和CaXyn10B的生化特性,它们分别是糖苷水解酶家族10(GH10)的成员,源自海洋拟杆菌属物种和。利用大肠杆菌中的自诱导表达系统,成功制备了这些酶的高纯度重组形式。生化分析表明,ZgXyn10A和CaXyn10B的最佳活性分别在40℃和30℃,并且对温度波动表现出高敏感性。与传统的低温酶不同,这些木聚糖酶在较低温度下仅保留其最大活性的一小部分。为了更深入了解这些海洋木聚糖酶的结构和功能特性,选择了两种与ZgXyn10A和CaXyn10B具有相当氨基酸序列同一性的热稳定GH10木聚糖酶TmxB和CoXyn10A进行结构比较。所有四种海洋木聚糖酶都具有几乎相似的三维结构拓扑。分子动力学模拟表明,低温和热稳定木聚糖酶在结构波动方面存在显著差异,这由不同的均方根偏差值证明。此外,均方根波动分析特别确定了底物结合裂隙内的β3-α3和β7-α7环区域是这些GH10木聚糖酶温度特性的关键决定因素。我们的研究结果确立了环动力学作为GH10木聚糖酶热适应性的关键进化驱动因素,并提出了一种环工程策略,用于开发具有定制温度响应的工业生物催化剂,特别是用于中等热条件下的木质纤维素生物质加工。